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Abstract. We propose a novel belief space planning technique for con-
tinuous dynamics by viewing the belief system as a hybrid dynamical
system with time-driven switching. Our approach is based on the per-
turbation theory of differential equations and extends Sequential Action
Control [1] to stochastic belief dynamics. The resulting algorithm, which
we name SACBP, does not require discretization of spaces or time and
synthesizes control signals in near real-time. SACBP is an anytime algo-
rithm that can handle general parametric Bayesian filters under certain
assumptions. We demonstrate the effectiveness of our approach in an
active sensing scenario and a model-based Bayesian reinforcement learn-
ing problem. In these challenging problems, we show that the algorithm
significantly outperforms other existing solution techniques including ap-
proximate dynamic programming and local trajectory optimization.

Keywords: Mobile Robots, Optimization and Optimal Control, Prob-
abilistic Reasoning, Vision and Sensor-based Control

1 Introduction

Planning under uncertainty still remains as a challenge for robotic systems. Vari-
ous types of uncertainty, including unmodeled dynamics, stochastic disturbances,
and imperfect sensing, significantly complicate problems that are otherwise easy.
For example, suppose that a robot needs to move an object from some initial
state to a desired goal. If the mass properties of the object are not known before-
hand, the robot needs to simultaneously estimate these parameters and perform
control, while taking into account the effects of their uncertainty; the exploration
and exploitation trade-off needs to be resolved [2]. On the other hand, uncer-
tainty is quite fundamental in motivating some problems. For instance, a noisy
sensor may encourage the robot to carefully plan a trajectory so the observations
taken along it are sufficiently informative. This type of problems concerns pure
information gathering and is often referred to as active sensing [3].

A principled approach to address all those problems is to form plans in the
belief space, where the planner chooses sequential control inputs based on the
evolution of the belief state. This approach enables the robot to appropriately



execute controls under stochasticity and partial observability since they are both
incorporated into the belief state. Belief space planning is also well suited for
generating information gathering actions [4].

This paper proposes a novel online belief space planning algorithm. It does
not require discretization of the state space or the action space, and can directly
handle continuous-time system dynamics. The algorithm optimizes the expected
value of the first-order cost reduction with respect to a nominal control policy
at every re-planning time, proceeding in a receding horizon fashion. We are
inspired by the Sequential Action Control (SAC) [1] algorithm recently proposed
by Ansari and Murphey for model-based deterministic optimal control problems.
SAC is an online method to synthesize control signals in real time for challenging
(but deterministic) physical systems such as a cart pendulum and a spring-
loaded inverted pendulum. Based on the concept of SAC, this paper develops an
algorithmic framework to control stochastic belief systems whose dynamics are
governed by parametric Bayesian filters.

1.1 Related Work in Belief Space Planning

Greedy Strategies Belief space planning is known to be challenging for a few
reasons. First, the belief state is continuous and can be high-dimensional even
if the underlying state space is small or discrete. Second, the dynamics that
govern the belief state transitions are stochastic due to unknown future observa-
tions. Greedy approaches alleviate the complexity by ignoring long-term effects
and solve single-shot decision making problems. Despite their suboptimality for
long-term planning, these methods are often employed to find computationally
tractable solutions and achieve reasonable performance in different problems
[5–7], especially in the active sensing domain.

Trajectory Optimization Methods In contrast to the greedy approaches, trajec-
tory optimization methods take into account multiple timesteps at once and find
non-myopic solutions. In doing so, it is often assumed that the maximum likeli-
hood observation (MLO) will always occur at the planning phase [4, 8, 9]. This
heuristic assumption results in a deterministic optimal control problem, whereby
various nonlinear trajectory optimization algorithms are applicable. However, ig-
noring the effects of stochastic future observations can degrade the performance
[10]. Other methods [10, 11] that do not rely on the MLO assumption are advan-
tageous in that regard. In particular, belief iLQG [10] performs iterative local
optimization in the Gaussian belief space by quadratically approximating the
value function and linearizing the dynamics to obtain a time-variant linear feed-
back policy. However, this method as well as many other solution techniques in
this category result in multiple iterations of intensive computation and require
significant amount of time until convergence.

Belief MDP and POMDP Approaches Belief space planning can be modeled
as a Markov decision process (MDP) in the belief space, given that the belief
state transition is Markovian. If in addition the reward (or cost) is defined as



an explicit function of the state and the control, the problem is equivalent to
a partially observable Markov decision process (POMDP) [12]. A key challenge
in POMDPs and belief MDPs has been to address problems with large state
spaces. This is particularly important in belief MDPs since the state space for a
belief MDP is a continuous belief space. To handle continuous spaces, Couëtoux
et al. [13] introduce double progressive widening (DPW) for Monte Carlo Tree
Search (MCTS) [14]. In [2], this MCTS-DPW algorithm is run in the belief space
to solve the object manipulation problem mentioned in Section 1. We have also
presented a motion-based communication algorithm in our prior work [15], which
uses MCTS-DPW for active intent inference with monocular vision.

While MCTS-DPW as well as other general purpose POMDP methods [16,
17] are capable of handling continuous state spaces, their algorithmic concepts
are rooted in dynamic programming and tree search, requiring a sufficient amount
of exploration in the tree. The tree search technique also implicitly assumes
discrete-time transition models. In fact, most prior works discussed above are
intended for discrete-time systems. There still remains a need for an efficient and
high-performance belief space planning algorithm that is capable of directly han-
dling systems with inherently continuous-space, continuous-time dynamics, such
as maneuvering micro-aerial vehicles, or autonomous cars at freeways speeds.

1.2 Contributions

Our approach presented in this paper is significantly different than the previous
approaches discussed above. We view the stochastic belief dynamics as a hybrid
system with time-driven switching [18], where the controls are applied in con-
tinuous time and the observations are made in discrete time. A discrete-time
observation creates a jump discontinuity in the belief state trajectory due to a
sudden Bayesian update of the belief state. This view of belief space planning
yields a continuous-time optimal control problem of a high-dimensional hybrid
system. We then propose a model-based control algorithm to efficiently compute
the control signals in a receding-horizon fashion. The algorithm is based on Se-
quential Action Control (SAC) [1]. SAC in its original form is a deterministic,
model-based hybrid control algorithm, which “perturbs” a nominal control tra-
jectory in a structured way so that the cost functional is optimally reduced up to
the first order. The key to this approach is the use of perturbation theory of dif-
ferential equations that is often discussed in the mode scheduling literature [19,
20]. As a result, SAC derives the optimal perturbation in closed form and syn-
thesizes control signals at a high frequency to achieve a significant improvement
over other optimal control methods based on local trajectory optimization.

We apply the perturbation theory to parametric Bayesian filters and derive
the optimal control perturbation using the framework of SAC. To account for
stochasticity, we also extend the original algorithm by incorporating Monte Carlo
sampling of nominal belief trajectories. Our key contribution is the resulting con-
tinuous belief space planning algorithm, which we name SACBP. The algorithm
has the following desirable properties:



1. SACBP optimizes the expected value of the first-order reduction of the cost
functional with respect to some nominal control in near real-time.

2. SACBP does not require discretization of the state space, the observation
space, or the control space. It also does not require discretization of time
other than for numerical integration purposes.

3. General nonlinear parametric Bayesian filters can be used for state estima-
tion as long as the system is control-affine and the control cost is quadratic.

4. Stochasticity in the future observations are fully considered.

5. SACBP is an anytime algorithm. Furthermore, the Monte Carlo sampling
part of the algorithm is naturally parallelizable.

6. Even though SACBP is inherently suboptimal for the original stochastic
optimal control problem, empirical results suggest that it is highly sample-
efficient and outperforms other approaches when near real-time performance
is required.

Although there exists prior work [21] that uses SAC for active sensing, its
problem formulation relies on the ergodic control framework, which is signif-
icantly different from the belief space planning framework we propose here.
We show that our SACBP outperforms ergodic trajectory optimization, MCTS-
DPW, and a greedy method on a multi-target tracking example. We also show
that SACBP outperforms belief iLQG and MCTS-DPW on a manipulation sce-
nario. In the next section we derive relevant equations and present the SACBP
algorithm along with a running time analysis. The simulation results are sum-
marized in Section 3, followed by conclusions and future work in Section 4.

2 SACBP Algorithm

We first consider the case where some components of the state are fully observ-
able. This mixed observability assumption is common in various active sensing
problems [7, 22, 23] where the state of the robot is perfectly known, but some
external variable of interest (e.g. a target’s location) is stochastic. In addition,
deterministic state transitions are often assumed for the robot. Therefore, in Sec-
tion 2.1 we derive the SACBP control update formulae for this case. The general
belief space planning where none of the state is fully observable or determinis-
tically controlled is discussed in Section 2.2. An extension to use a closed-loop
policy as the nominal control is presented in Section 2.3. The computational
time complexity is discussed in Section 2.4.

2.1 Problems with Mixed Observability

Suppose that a robot can fully observe and deterministically control some state
p(t) ∈ Rn. Other states are not known to the robot and are estimated with the
belief vector b(t) ∈ Rm. We define the augmented state as s , (pT, bT)T ∈ Rn+m.



Dynamics Model The physical state p is described by the following ODE:

ṗ(t) = f (p(t), u(t)) , (1)

where u(t) ∈ Rl is the control signal. On the other hand, suppose that the
belief state changes in discrete time upon arrival of a new observation from the
sensors. We will discuss the more general continuous-discrete filtering in Section
2.2. Let tk be the time when k-th observation becomes available to the robot.
The belief state transition is given by{

b(t+k ) = g(p(t−k ), b(t−k ), yk)

b(t) = b(t+k ) t ∈ [t+k , t
−
k+1],

(2)

where t+k is infinitesimally larger than tk and t−k smaller. Nonlinear function
g corresponds to a parametric Bayesian filter (e.g., Kalman Filter, Extended
Kalman Filter, Discrete Bayesian Filter, etc.) that takes the new observation
yk ∈ Rq and returns the updated belief state. The concrete choice of the filter
depends on the instance of the problem. We demand the Bayesian filter to be
differentiable in p and b, which we assume hereafter.1

Equations (1) and (2) constitute a hybrid system with time-driven switching
[18]. This hybrid system representation is practical since it captures the fact
that the observation updates occur less frequently than the control actuation
in general, due to expensive information processing of sensor readings. Further-
more, with this representation one can naturally handle agile systems as they
are without coarse discretization in time.

Given the initial state s(t0) = (p(t0)T, b(t0)T)T and a control trajectory from
t0 to tf denoted as u(t0 → tf ), the system evolves stochastically according to the
hybrid dynamics equations. The stochasticity is due to a sequence of stochastic
future observations that will be taken by tf .2

Perturbed Dynamics The control synthesis of SACBP begins with a given
nominal control trajectory un(t0 → tf ). Suppose that the nominal control is
applied to the system and a sequence of K observations (y(1), . . . , y(K)) is ob-
tained. Conditioned on the observation sequence, the augmented state evolves
deterministically. Let sn = (pTn , b

T
n )T be the nominal trajectory of the augmented

state induced by (y(1), . . . , y(K)).
Now let us consider perturbing the nominal trajectory at a fixed time τ for

a short duration ε > 0. The perturbed control trajectory uw is defined as

uw(t) ,

{
w if t ∈ [τ − ε, τ ]

un(t) otherwise.
(3)

1 Prior work such as [4, 10] also assumes this differentiability property.
2 We assume that the observation interval tk+1 − tk , ∆to is fixed, and the control

signals are recomputed when a new observation is incorporated in the belief.



The resulting perturbed system trajectory can be written as{
pw(t, ε) , pn(t) + εΨp(t) + o(ε)

bw(t, ε) , bn(t) + εΨb(t) + o(ε),
(4)

where Ψp(t) ,
∂+
∂ε pw(t, ε)

∣∣
ε=0

and Ψb(t) ,
∂+
∂ε bw(t, ε)

∣∣
ε=0

are the state variations

that are linear in the perturbation duration ε. The notation ∂+
∂ε represents the

right derivative with respect to ε. The state variations at perturbation time τ
satisfy {

Ψp(τ) = f(pn(τ), w)− f(pn(τ), un(τ))

Ψb(τ) = 0,
(5)

assuming that τ does not exactly correspond to one of the switching times tk
[24]. For t ≥ τ , the physical state variation Ψp evolves according to the following
first-order ODE:

Ψ̇p(t) =
d

dt

(
∂+
∂ε
pw(t, ε)

∣∣∣∣
ε=0

)
(6)

=
∂+
∂ε
f(pw(t, ε), un(t))

∣∣∣∣
ε=0

(7)

=
∂

∂p
f (pn(t), un(t))Ψp(t), (8)

where the chain rule of differentiation and pw(t, 0) = pn(t) are used in (8). The
dynamics of the belief state variation Ψb in the continuous region t ∈ [t+k , t

−
k+1]

are Ψ̇b(t) = 0 since the belief vector b(t) is constant according to (2). However,
across the discrete jumps the belief state variation Ψb changes discontinuously
and satisfies

Ψb(t
+
k ) =

∂+
∂ε
bw(t+k , ε)

∣∣∣∣
ε=0

(9)

=
∂+
∂ε
g
(
pw(t−k , ε), bw(t−k , ε), yk

) ∣∣∣∣
ε=0

(10)

=
∂

∂p
g
(
pn(t−k ), bn(t−k ), yk

)
Ψp(t

−
k ) +

∂

∂b
g
(
pn(t−k ), bn(t−k ), yk

)
Ψb(t

−
k ).

(11)

Perturbed Cost Functional Let us consider the cost functional of the form

J(p, b, u) =

∫ tf

t0

c (p(t), b(t), u(t)) dt+ h(p(tf ), b(tf )), (12)

where c is the running cost and h is the terminal cost. Following the discussion
above on the perturbed dynamics, let Jn be the total cost of the nominal trajec-
tory conditioned on the given observation sequence (y(1), . . . , y(K)). Under the



fixed perturbation time τ , we represent the perturbed cost Jw in terms of Jn as

Jw(pw, bw, ε) , Jn + εν(tf ) + o(ε), (13)

where ν(tf ) , ∂+
∂ε Jw(pw, bw, ε)|ε=0 is the variation of the cost functional linear in

ε. For further analysis it is convenient to express the running cost in the Mayer
form [24]. Let s0(t) be a new state variable defined by ṡ0(t) = c (p(t), b(t), u(t))
and s(t0) = 0. Then the total cost is a function of the appended augmented state
s̄ , (s0, sT)T ∈ R1+n+m at time tf , which is given by

J = s0(tf ) + h (s(tf )) . (14)

Using this form of total cost J , the perturbed cost (13) is

Jw = Jn + ε

 1
∂
∂ph (pn(tf ), bn(tf ))
∂
∂bh (pn(tf ), bn(tf ))

T

Ψ̄(tf ) + o(ε), (15)

where Ψ̄(tf ) ,
(
Ψ0(tf )T, Ψp(tf )T, Ψb(tf )T

)T
. Note that the dot product in (15)

corresponds to ν(tf ) in (13). The variation of the appended augmented state Ψ0

follows the variational equation

Ψ̇0(t) =
d

dt

(
∂+
∂ε
s0w(t, ε)

∣∣∣∣
ε=0

)
(16)

=
∂

∂p
c(pn(t), bn(t), un(t))TΨp(t) +

∂

∂b
c(pn(t), bn(t), un(t))TΨb(t). (17)

The perturbed cost equation (15), especially the dot product expressing
ν(tf ), is consequential; it tells us how the total cost functional changes due to
the perturbation at some fixed time τ , up to the first order with respect to the
perturbation duration ε. At this point, one could compute the value of ν(tf ) for
a control perturbation with a specific value of (w, τ) by simulating the nominal
dynamics and integrating the variational equations (8)(11)(17) up to tf .

Adjoint Equations Unfortunately, this forward integration of ν(tf ) is not so
useful by itself since we are interested in finding the value of (w, τ) that leads to
the minimum value of ν(tf ), if it exists; it would be computationally intensive to
apply control perturbation at different application times τ with different values
of w and re-simulate state variation Ψ̄ . To avoid this computationally expensive
search, Ansari and Murphey [1] has introduced the adjoint system ρ̄ with which
the dot product is invariant: d

dt

(
ρ̄(t)TΨ̄(t)

)
= 0 ∀t ∈ [t0, tf ]. If we let ρ̄(tf ) =(

1, ∂∂ph (pn(tf ), bn(tf ))
T
, ∂∂bh (pn(tf ), bn(tf ))

T
)T

so that its dot product with

Ψ̄(tf ) equals ν(tf ) as in (15), the time invariance gives

ν(tf ) = ρ̄(τ)TΨ̄(τ) (18)

= ρ̄(τ)T

c (pn(τ), bn(τ), w)− c (pn(τ), bn(τ), un(τ))
f(pn(τ), w)− f(pn(τ), un(τ))

0

 . (19)



Therefore, we can compute the first-order cost change ν(tf ) for different values
of τ once the adjoint trajectory is derived. For t ∈ [t+k , t

−
k+1] the time derivative

of Ψb exists, and the invariance property suggests that ˙̄ρ(t)TΨ̄(t)+ ρ̄(t)T ˙̄Ψ(t) = 0
is enforced. It can be verified that the following system satisfies this equation:

ρ̇0(t) = 0

ρ̇p(t) = − ∂
∂pc(pn(t), bn(t), un(t))− ∂

∂pf(pn(t), un(t))Tρp(τ)

ρ̇b(t) = − ∂
∂bc(pn(t), bn(t), un(t)).

(20)

Analogously, at discrete jumps we can still enforce the invariance by setting
ρ̄(t+k )TΨ̄(t+k ) = ρ̄(t−k )TΨ̄(t−k ), which holds for the following adjoint equations:

ρ0(t−k ) = ρ0(t+k )

ρp(t
−
k ) = ρp(t

+
k ) + ∂

∂pg
(
pn(t−k ), bn(t−k ), yk

)T
ρb(t

+
k )

ρb(t
−
k ) = ∂

∂bg
(
pn(t−k ), bn(t−k ), yk

)T
ρb(t

+
k ).

(21)

Note that the adjoint system integrates backward in time as it has the boundary
condition defined at tf . More importantly, the adjoint dynamics (20)(21) only
depend on the nominal trajectory of the system (pn, bn) and the observation
sequence (y(1), . . . , y(K)). The linear variation term ν(tf ) is finally given by

ν(tf ) = c(pn(τ), bn(τ), w)− c(pn(τ), bn(τ), un(τ))+

ρp(τ)T (f(pn(τ), w)− f(pn(τ), un(τ))) . (22)

Control Optimization In order to efficiently optimize (22) with respect to
(w, τ), the rest of the paper assumes that the control cost is quadratic 1

2u
TCuu

and the dynamics model f(p, u) is control-affine with linear term H(p)u. Al-
though the control-affine assumption may appear restrictive, many physical sys-
tems possess this property in engineering practice. As a result of these assump-
tions, (22) becomes

ν(tf ) =
1

2
wTCuw + ρp(τ)TH(pn(τ))(w − un(τ))− 1

2
un(τ)TCuun(τ). (23)

So far we have treated the observation sequence (y(1), . . . , y(K)) as given and
fixed. However, in practice it is a random process that we have to take into ac-
count. Fortunately, our control optimization is all based on the nominal control
un(t0 → tf ), with which we can both simulate the augmented dynamics and sam-
ple the observations. To see this, let us rewrite ν(tf ) in (23) as ν(tf , y(1), . . . , y(K))
to clarify the dependence on the observations. The expected value of the first
order cost variation is given by

E[ν(tf )] =

∫
ν(tf , y(1), . . . , y(K))p

(
y(1), . . . , y(K) | un(t0 → tf )

)
dy(1) . . . dy(K).

(24)



Even though we do not know the values of the distribution above, we have the
generative model; we can simulate the augmented state trajectory using the
nominal control un(t0 → tf ) and sample the stochastic observations from the
belief states along the trajectory.

Using the linearity of expectation for (23), we have

E[ν(tf )] =
1

2
wTCuw + E[ρp(τ)]TH(pn(τ))(w − un(τ))− 1

2
un(τ)TCuun(τ).

(25)

Notice that only the adjoint trajectory is stochastic. We can employ Monte Carlo
sampling to sample a sufficient number of observation sequences to approximate
the expected adjoint trajectory. Now (25) becomes a convex quadratic in w for
Cu � 0. An existing convex solver efficiently solves the following convex program
with a box saturation constraint. Furthermore, analytical solutions are available
if Cu is diagonal, since the coordinates of w are completely decoupled in this
case.

minimize
w

E[ν(tf )]

subject to a � w � b
(26)

This optimization is solved for different values of τ ∈ (t0 + tcalc + ε, t0 +
∆to), where tcalc is the pre-allocated computational time budget and ∆to is the
time interval between two successive observations and control updates. We then
search for the optimal perturbation time τ∗ to globally minimize E[ν(tf )] over
(w∗(τ), τ). There is only a finite number of τ to consider since in practice we
use numerical integration such as the Euler scheme with some step size ∆tc
to compute the trajectories. In [1] the finite perturbation duration ε is also
optimized using line search, but in this work we set ε as a tunable parameter to
reduce the computational complexity. The complete algorithm is summarized in
Algorithm 1, which is called every ∆to[s] as the new observation is incorporated
in the belief.

2.2 General Belief Space Planning Problems

If none of the state is fully observable, the same stochastic SAC framework still
applies almost as is to the belief sate b. In this case we consider a continuous-
discrete filter [25] where the prediction step follows an ODE and the update
step provides an instantaneous discrete jump. The hybrid dynamics for the belief
vector are given by {

b(t+k ) = g(b(t−k ), yk)

ḃ(t) = fb(b(t), u(t)) t ∈ [t+k , t
−
k+1].

(27)

Mirroring the approach in Section 2.1, one can verify that the linear cost varia-
tion term ν(tf ) has the same form as (22):

ν(tf ) = c(bn(τ), w)− c(bn(τ), un(τ)) + ρ(τ)T (fb(bn(τ), w)− fb(bn(τ), un(τ))) .
(28)



Algorithm 1 SACBP Control Update

INPUT: Current augmented state s(t0) = (p(t0)T, b(t0)T)T or belief state b(t0),
nominal control trajectory un(t0 → tf ), perturbation duration ε > 0

OUTPUT: Optimally perturbed control trajectory uw(t0 → tf )
1: for i = 1:N do
2: Forward-simulate augmented state trajectory (1)(2) or belief state tra-

jectory (27) and sample observation sequence (yi(1), . . . , y
i
(K)) from the belief

states.
3: Backward-simulate adjoint trajectory ρi(t0 → tf ) (20)(21) or (29) with

sampled observations.
4: end for
5: Monte Carlo estimate E[ρp] ≈ 1

N

∑N
i=1 ρ

i
p or E[ρTHb(bn)] ≈

1
N

∑N
i=1 ρ

iTHb(b
i
n).

6: for (τ = t0 + tcalc + ε; τ ≤ t0 +∆to; τ ← τ +∆tc) do
7: Solve convex program (26). Store optimal value v∗(τ) and optimizer
w∗(τ).

8: end for
9: τ∗ ← arg min v∗(τ), w∗ ← w∗(τ∗)

10: uw(t0 → tf )← PerturbControlTrajectory(un, w
∗, τ∗, ε) (3)

11: return uw(t0 → tf )

The adjoint variable ρ now has the same dimension as b and follows the adjoint
dynamics {

ρ(t−k ) = ∂
∂bg(bn(t+k ), yk)Tρ(t+k )

ρ̇(t) = − ∂
∂bc(bn(t), un(t))− ∂

∂bfb(bn(t), un(t))Tρ(t),
(29)

with the boundary condition ρ(tf ) = ∂
∂bh(bn(tf )). Under the control-affine as-

sumption for fb and the quadratic control cost,3 the expected first order cost
variation (28) yields

E[ν(tf )] =
1

2
wTCuw + E[ρ(τ)THb(bn(τ))](w − un(τ))− 1

2
un(τ)TCuun(τ),

(30)

where Hb is the control coefficient term in fb. We can sample ρ(τ)THb(bn(τ))
via the forward-backward simulation of the dynamics.

2.3 Closed-loop Nominal Policy

In Sections 2.1 and 2.2 we assumed that the nominal control un was an open-loop
control trajectory. However, one can think of a scenario where a nominal control

3 Although it is difficult to state the general conditions under which this control-affine
assumption holds, it can be verified that the continuous-discrete EKF [25] satisfies
this property if the underlying state dynamics are control-affine.



is a closed-loop policy computed off-line, possibly using a POMDP algorithm in
a discretized space. Indeed, SACBP can also handle closed-loop nominal poli-
cies. Let πn be a closed-loop nominal policy, which is a mapping from either an
augmented state s or a belief state b to a control value u. Due to the stochastic
belief dynamics, the control values returned by πn in the future is also stochastic.
This is reflected when we take expectations over the nominal dynamics. Specif-
ically, the terms dependent on un in (25) and (30) now become stochastic and
thus need to be sampled. However, the equations are still convex quadratic in
w as it is decoupled from the nominal control. Therefore, only lines 5 and 7 of
Algorithm 1 are affected.

2.4 Computational Time Analysis

Let us analyze the time complexity of the SACBP algorithm. The bottleneck of
the computation is when the forward-backward simulation is performed multi-
ple times (lines 1–5 of Algorithm 1). The asymptotic complexity of this part is
given by O(N(

tf−t0
∆to

)(Mforward +Mbackward)), where Mforward and Mbackward are
the times to respectively integrate the forward and backward dynamics between
two successive observations. For a more concrete analysis let us use the Gaus-
sian belief dynamics given by EKF as an example. For simplicity we assume the
same dimension n for the state, control and the observation. The belief state
has dimension O(n2). Using the Euler scheme, The forward integration takes
Mforward = O((∆to∆tc

+ 1)n3) since evaluating continuous and discrete EKF equa-

tions are both O(n3). Evaluating the continuous part of the costate dynamics
(29) is dominated by the computation of Jacobian ∂fb

∂b , which is O(n5) because
O(n3) operations to evaluate fb are carried out O(n2) times. The discrete part is
also O(n5). Therefore, Mbackward = O((∆to∆tc

+1)n5). Overall, the time complexity

is O(N(
tf−t0
∆to

)(∆to∆tc
+1)n5). This is asymptotically smaller in n than belief iLQG,

which is O(n6). See [11] for a comparison of time complexity among different
belief space planning algorithms. We also remind the readers that SACBP is an
online method and a naive implementation already achieves near real-time per-
formance, computing control in less than 0.4[s]. By near real-time we mean that
a naive implementation of SACBP requires approximately 3 × tcalc to 7 × tcalc
time to compute an action that must be applied tcalc in the future. We expect
that parallelization in a GPU and a more efficient implementation will result in
real-time computation for SACBP.

3 Simulation Results

We evaluated the performance of SACBP in the following simulation studies: (i)
active multi-target tracking with range-only observations; (ii) object manipula-
tion under model uncertainty. All the computation was performed on a desktop
computer with Intel Core i7-6800K CPU and 62.8GB RAM. The Monte Carlo
sampling of SACBP was parallelized on the CPU.



3.1 Active Multi-Target Tracking with Range-only Observations

This problem focuses on pure information gathering, namely identifying where
the moving targets are in the environment. In doing so, the surveillance robot
modeled as a single integrator can only use relative distance observations. The
robot’s position p is fully observable and transitions deterministically. Assuming
perfect data association, the observation for target i is di = ||qi−p+vi||2, where
qi is the true target position and vi is zero-mean Gaussian white noise with
state-dependent covariance R(p, qi) = R0 + ||qi − p||2R1. We used 0.01I2×2 for
the nominal noise R0. The range-dependent noise R1 = 0.001I2×2 degrades the
observation quality as the robot gets farther from the target. The discrete-time
UKF was employed for state estimation in tracking 20 independent targets.
The target dynamics are modeled by a 2D Brownian motion with covariance
Q = 0.1I2×2. Similarly to [26], an approximated observation covariance R(p, µi)
was used in the filter to obtain tractable estimation results, where µi is the most
recent mean estimate of qi.

SACBP algorithm generated the continuous robot trajectory over 200[s] with
planning horizon tf − t0 = 2[s], update interval ∆to = 0.2[s], perturbation du-
ration ε = 0.16[s], and N = 10 Monte Carlo samples. The Euler scheme was
used for integration with ∆tc = 0.01[s]. The Jacobians and the gradients were
computed either analytically or using an automatic differentiation tool [27] to
retain both speed and precision. In this simulation tcalc = 0.05[s] was assumed
no matter how long the actual control update took. We used c(p, b, u) = 0.05uTu

for the running cost and h(p, b) =
∑20
i=1 exp(entropy(bi)) for the terminal cost,

with an intention to reduce the worst-case uncertainty among the targets. The
nominal control was constantly 0.

We compared SACBP against three benchmarks: (i) a greedy algorithm based
on the gradient descent of terminal cost h, similar to [7]; (ii) MCTS-DPW [13,
28] in the Gaussian belief space; (iii) projection-based trajectory optimization
for ergodic exploration [29–31]. We also implemented the belief iLQG algorithm,
but the policy did not converge for this problem. We speculate that the non-
convex terminal cost h contributed to this behavior, which in fact violates one
of the underlying assumptions made in the paper [10].

MCTS-DPW used the same planning horizon as SACBP, however it drew
N = 15 samples from the belief tree so the computation time of the two al-
gorithms match approximately. Ergodic trajectory optimization is not a belief
space planning approach but has been used in active sensing literature. Begin-
ning with nominal control 0, it locally optimized the ergodicity of the trajectory
with respect to the spatial information distribution based on Fisher information.
This optimization was open-loop since the future observations were not consid-
ered. As a new observation became available, the distribution and the trajectory
were recomputed. All the controllers were saturated at the same limit. The re-
sults presented in Fig. 1 clearly indicates a significant performance improvement
of SACBP while achieving near real-time computation. More notably, SACBP
generated a trajectory that periodically revisited the two groups whereas other
methods failed to do so (Fig. 2).
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Fig. 1: (Left) Simulation environment with 20 targets and a surveillance robot. (Mid-
dle) The history of the worst entropy value among the targets averaged over 20 runs
with the standard deviation. With the budget of 10 Monte Carlo samples, SACBP
had small variance and consistently outperformed the other benchmarks on average.
(Right) Computational time of SACBP achieved a reasonable value compared with the
benchmarks, only 0.11[s] slower than the targeted value, i.e., simulated tcalc.

Fig. 2: Sample robot trajectories (depicted in red) generated by each algorithm.
Greedy, MCTS-DPW, and Ergodic did not result in a trajectory that fully covers
the two groups of the targets, whereas SACBP periodically revisited both of them.
The blue lines are the target trajectories. The ellipses are 99% error ellipses.

3.2 Object Manipulation under Model Uncertainty

This problem is the model-based Bayesian reinforcement learning problem stud-
ied in [2], therefore the description of the nonlinear dynamics and the observation
models are omitted. See Fig. 3 for the illustration of the environment. The robot
applies the force and the torque to move the object whose mass, moment of
inertia, moment arm lengths, and linear friction coefficient are unknown. The
robot’s state also needs to be estimated. The same values for tf − t0, ∆to, ∆tc,
tcalc as in the previous problem were assumed. SACBP used ε = 0.04[s] and
N = 10. The nominal control was a closed-loop position controller whose in-
put was the mean x-y position and the rotation estimates. The cost function
was quadratic in the true state x and control u, given by 1

2x
TCxx + 1

2u
TCuu.

Taking expectations yielded the equivalent cost in the Gaussian belief space
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Fig. 3: (Left) The robot is attached to the rectangular object. (Middle) The history
of the true running cost 1

2
xTCxx + 1

2
uTCuu averaged over 20 cases. SACBP with

N = 10 samples successfully brought the cost to almost 0, meaning that the goal was
reached. MCTS-DPW with N = 190 was not as successful. Belief iLQG resulted in large
overshoots around 2[s] and 11[s]. (Right) Computational time of SACBP increased from
the multi-target tracking problem due to additional computation related to the closed-
loop nominal policy. Note that belief iLQG took 5945[s] to derive the policy off-line,
although the average online execution time was only 4.0× 10−5[s] per iteration.

c(b, u) = 1
2µ

TCxµ+ 1
2 tr(CxΣ) + 1

2u
TCuu, where Σ is the covariance matrix. We

let terminal cost h be the same as c without the control term.
We compared SACBP against (i) MCTS-DPW in the Gaussian belief space

and (ii) belief iLQG. We allowed MCTS-DPW to draw N = 190 samples to
set the computation time comparable to SACBP. As suggested in [2], MCTS-
DPW used the position controller mentioned above as the rollout policy. Sim-
ilarly, belief iLQG was initialized with a nominal trajectory generated by the
same position controller. Note that both MCTS-DPW and belief iLQG com-
puted controls for the discrete-time models whereas SACBP directly used the
continuous-time model. However the simulation was all performed in continuous
time, which could explain the large overshoot of the belief iLQG trajectory in
Fig. 3. Overall, the results presented above demonstrate that SACBP succeeded
in this task with only 10 Monte Carlo samples, reducing the running cost to al-
most 0 within 10[s]. Although the computation time increased from the previous
problem due to the usage of a closed-loop nominal policy, it still achieved near
real-time performance and much shorter than belief iLQG, which took 5945[s]
until convergence in our implementation.

4 Conclusions and Future Work

In this paper we have presented SACBP, a novel belief space planning algo-
rithm for continuous-time dynamical systems. We have viewed the stochastic
belief dynamics as a hybrid system with time-driven switching and derived the
optimal control perturbation based on the perturbation theory of differential



equations. The resulting algorithm extends the framework of SAC to stochastic
belief dynamics and is highly parallelizable to run in near real-time. Through the
extensive simulation study we have confirmed that SACBP outperforms other al-
gorithms including a greedy algorithm, a local trajectory optimization method,
and an approximate dynamic programming approach. In future work we will
consider a distributed multi-robot version of SACBP as well as problems where
both discrete and continuous actions exist. We also plan to address questions
regarding the theoretical guarantees of this algorithm and provide additional
case studies with more complex belief distributions.
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