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Multi-Robot Systems Lab :|\./|s|_

We develop

theory and algorithms for

control, planning, and estimation of
multiple mobile robots in
Interactive environments.
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Multi-Robot Systems Lab

Recent projects include:
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Multi-Robot Systems Lab L:n.nsd

Recent projects include:

« Coordinating without Talking

The agents adapt their controllers on-line to
accommodate the unknown mass and friction.

Preston Culbertson
) Stanford University



Multi-Robot Systems Lab
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Recent projects include:

* Intercepting Rogue Robots

« Coordinating without Talking
 Distributed Shape Shifting Robots

« Game-Theoretic Planning for Racing

Nathan Usevitch




Multi-Robot Systems Lab

Recent projects include:

» Game-Theoretic Planning for Racing

Dr. Riccardo Spica Dr. Zijian Wang
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A Real-Time Game Theoretic Planner for
Autonomous Two-Player Drone Racing

Riccardo Spica, Eric Cristofalo, Zijian Wang,
Eduardo Montijano, and Mac Schwager

tanford @ “# Universidad

University Zaragoza
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Multi-Robot Systems Lab

Recent projects include:

» Game-Theoretic Planning for Racing

Game Theoretic Planner (GTP), speed limit: S5m/s
Simulated car:
MPC pl

Mingyu Wang




Today's Main Focus :|\./|s|_

Algorithms for Information-Theoretic Active Sensing:

Rapidly-Exploring Random Cycles Monte Carlo Tree Search with Sequential Action Control for
(RRC/RRC?) Double-Progressive Widening Belief Space Planning
(MCTS-DPW) (SACBP)
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 Discrete-Time Linear Gaussian Systems » Discrete-Time Nonlinear Non-Gaussian » Continuous-Time Nonlinear Non-
* Persistent Surveillance/Monitoring Systems Gaussian Systems
* Active Intent Inference * Multi-Target Tracking, etc.
[X.Lan and M. Schwager, IEEE T-RO 2016] [H. Nishimura and M. Schwager, ICRA 2018] [H. Nishimura and M. Schwager, WAFR 2018]

9 Stanford University



..J

Information-Theoretic Active Sensing O MS

1.

Model a time-varying phenomenon as a
partially-observable stochastic process.

Hidden Markov Model (HMM)
with Linear Gaussian dynamics

ar+1 = Aay + wy we ~ N(0,Q)

yr = ¢(xt) + v vi ~ N (0, R)

Spatio-Temporal Field in the
Caribbean Sea Surface

10 [X.Lan and M. Schwager, IEEE T-RO 2016] Stanford University



Information-Theoretic Active Sensing L:I\.IISJ

2. Track the "belief state” using Bayesian filtering techniques.

The Kalman Filter Hidden Markov Model (HMM)
(online estimation) with Linear Gaussian dynamics
Diir = Ady + ADC() (CIBCE)T + R d:(q) = C(q)ar
x (Y — C(pt)¢t)
Yip1 = AS AT — ASO ()T (O (24) B4 (C ()™ Gt+1 = Aag +wy we ™~ N(O’ Q)
T ClRAT e Yt = ¢(we) + v vy ~ N (0, R)

11 [X.Lan and M. Schwager, IEEE T-RO 2016] Stanford University



Information-Theoretic Active Sensing L:I\.IISJ

3. Devise an algorithm to optimize an information-theoretic cost
associated with the evolving belief states.

Rapidly-Exploring Random Cycles
(RRC/RRC*)

Winner of 2016 King-Sun Fu Memorial IEEE
Transactions on Robotics Best Paper Award

* Linear Gaussian Systems

 Persistent Surveillance/Monitoring

\\

[X. Lan and M. Schwager, IEEE T-RO 2016] Dr. Xiaodong Lan
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Rapidly Exploring Random Cycles (RRC/RRC*) | @MsL
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Spatio-Temporal Field

13 Multi-Robot Periodic Trajectory
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Tracking the Belief State

The Kalman Filter
(online estimation)

bri1 = Ady + A C(py)" (Clpe)SeClpe)" + R) ™ X
X(ye — C(pe) 1)

TRl

Yir1 = AZtAT - Azto(fﬂt)lv(c(xt)xt(C(mt)l
+ R)_lC(xt)EtAT + Q

st

Hidden Markov Model (HMM)
with Linear Gaussian dynamics

aty1 = ACLt + Wt W ~ N(O, Q)

yr = ¢(xe) + 11 vy ~ N(0, R)

Covariance Matrix evolves deterministically! (as a function of robot state x)

16
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Rapidly-Exploring Random Cycles (RRC) L:I\.IISJ

Sampling-based algorithm for offline motion planning,
inspired by RRT [Lavalle and Kuffner 2001] and RRT* [Karaman and Frazzoli 2011]
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Cycle = Spanning Tree + Single Edge m = =
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Caribbean Sea Simulation Results ®MSL

Cost VS. Number of Steps
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Multi-Robot RRC L:I\.IISIJ

e . Joint Measurement

ye = (Yt -, u7)

300 Plan in joint state space

L1:T — (x%:T7 s 756712:T)

200

100

0
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Optimal cycle in 6D space project onto 2D space
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Information-Theoretic Active Sensing
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Monte Carlo Tree Search with
Double-Progressive Widening
(MCTS-DPW)

. Current belief

Control input [ [ |
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* Discrete-Time Nonlinear Non-Gaussian
Systems
e Active Intent Inference

[H. Nishimura and M. Schwager, ICRA 2018]
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Active Intent Inference Problem

]

e
Traiectony
il
24t L

How to resolve message ambiguity | i

without knowing the relative pose? |
sender O

04 02 00 02 04 1 0 1 1 0
vim] viml vim1

Trajectory Class = "Message” or "Intent” receiver

24 Stanford University



The receiver actively changes its viewing positions
to disambiguate between trajectory hypotheses
while estimating the relative pose.

L

Receiver



Intent Inference Process Mode L:“.NSJ

Hidden Markov Model (HMM)
with Categorical Latent Variable m

receiver

26 Stanford University



Tracking the Belief State

Multi-Hypothesis Extend Kalman Filter

Class 2
Class 1
Pose space
Pose estimate Class estimate
+ Conditional on each + Compare each class
trajectory class hypothesis to the
+ Extended Kalman Action observation
Filter Algorithm & * Update the multinomial
Observation il

T l

27

®
®MSL

Hidden Markov Model (HMM)
with Categorical Latent Variable m

Stanford University




Dynamic Programming in Belief Space L:I\.IISJ

Cost Objective: Entropy of trajectory class distribution in T steps

Monte Carlo Tree Search with Double-Progressive Widening (MCTS-DPW)
[Couétoux et al. 2011] in the belief space

Current belief

Control input

28 Stanford University



Dynamic Programming in Belief Space L:I\.IISJ

Cost Objective: Entropy of trajectory class distribution in T steps

Monte Carlo Tree Search with Double-Progressive Widening (MCTS-DPW)
[Couétoux et al. 2011] in the belief space

Current belief

* DPW makes MCTS effective in
continuous state spaces

Control input

* Online search for receding-horizon
"""""""""""""""" execution
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Simulation Results in ROS-Gazebo :I\./ISL
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Information-Theoretic Active Sensing :I\./ISL

Rapidly-Exploring Random Cycles Monte Carlo Tree Search with Sequential Action Control for
(RRC/RRC¥) Double-Progressive Widening Belief Space Planning
(MCTS-DPW) | (SACBP)

Current belief

Control Space

Control input

;:,4 T Belief Space
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e Discrete-Time Nonlinear Non-Gaussian * Continuous-Time Nonlinear Non-
Systems Gaussian Systems

» Active Intent Inference
[X.Lan and M. Schwager, IEEE T-RO 2016] [H. Nishimura and M. Schwager, ICRA 2018]
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* Multi-Target Tracking, etc.
[H. Nishimura and M. Schwager, WAFR 2018]
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Continuous-Time Belief Space Planning L:N.NSJ

Active Multi-Target Tracking with
Range-only Measurements

Time: 0.2

y [m]

x [m]

32
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Continuous-Time Belief Space Planning L:N.NSJ

Active Multi-Target Tracking with Object Manipulation under
Range-only Measurements Model Uncertainty
Time: 0.0
sor e [ Object
o
Robot
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Key ldea L:I\./ISJ

View belief dynamics as a "hybrid system with time-driven switching”

A ~— - Periodic jump discontinuities by

observation update

H |

P

| \\ _\

Tt
Example: 1D Gaussian Belief Case (Continuous-Discrete Gaussian Filter)
34
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Key ldea

st

Optimally “perturb” a given nominal control policy

Control Space

-

35

t
Belief Space

(1) = w if t € [T —¢€,7]
T Y un(t)  otherwise.

This short perturbation has a non-myopic

effect on the resulting belief state trajectory

Stanford University



Optimal Perturbation for Hybrid Systems ®MSL

Sequential Action Control [Ansari and Murphey, 2016]

Sequential Action Control: Closed-Form Optimal
Control for Nonlinear and Nonsmooth Systems

Alex Ansari and Todd Murphey

Abstract—This paper presents a new model-based algorithm
that computes predictive optimal controls on-line and in closed
loop for traditionally challengi li systems. E T*
demonstrate the same algorithm controlling hybrid impulsive, TT‘ |I||.

models and trajectory goals. Rather than iteratively optimize L
finite horizon control sequences to minimize an objective, this . |
paper derives a closed-form expression for individual control | ]

actions, i.e., control values that can be applied for short dura- ¥ '

tion, that optimally improve a tracking objective over a long { T b b |
time horizon. Under mild assumptions, actions become linear @ |

underactuated, and constrained systems using only high-level L4 ||
|~K |

feedback laws near equilibria that permit stability analysis

and performance-based parameter selection. Globally, optimal

actions are goaranteed existence and uniqueness. By sequencing

these actions on-line, in receding horizon fashion, the proposed

controller provides a min-max constrained response to state

that avoids the overhead typically required to impose control Fig. 1. Time lapse (0.55) of a spring-loaded inverted pendulum (SLIF)
constraints. Benchmark examples show the approach can avoid reactively hopping up stairs using SAC,

local minima and outperform nonlinear optimal controllers and

36

Original SAC Algorithm:
* Physical Systems

e Deterministic State Transitions

SACBP (Ours):
» Belief Systems

» Stochastic State Transitions

Stanford University



Problem Formulation

Cost Functional:

J(b,u) = ft ' c(b(t),u(t))dt + h(b(ty))

Belief Dynamics:
l_’(t+) g(b(ty,), yx)
b(t) = f(b(),

u(t)) ety t]

Perturbed Control:

(1) = w ifte|r—erT]
Tl un(t)  otherwise.

37

Optimization Problem:

minimize
w,T

(1) = w ift €[t —e,7]
T Y un(t)  otherwise.

Stanford University



Perturbation Theory of Differential Equations L:“.NSJ

Given Y1, ..., YK, we can compute Optimization Problem
the conditional cost value using:

SN /M
4 _ _) . minimize  E¢,,  40) [aiJ(b,uw)‘ —0]
Nominal Belief Trajectory w,T T Oe €=
{b'n(t:) o subject t0 (p() = g(b(t; ), yp) k€ {1, K}
bu(t) = f(bn(t), un(t)) €[t ] b(t) = f(b(t),u(t)) teltf tp,,]
~_ — uw(t)—{w ift€[7.'—€,7']
Nominal Adjoint Trajectory Un(t) otherwise.

{(g) 2 g(bn(t), yi) To(t])
() —a@( n(0); un () = G F (ba(t), un(t))To(2)

38 Stanford University



Monte Carlo Sampling

Current Belief State
Current Time

Nominal Control
Policy
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Compute Nominal Belief Trajectory

K

- Sample Observations
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Optimal perturbation
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Compute Nominal Adjoint Trajectory
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SACBP Algorithm at a Glance L:I\.IISJ

Current Belief State b/:>\ Optimal perturbation
Current Time 4_/':L,' (w*, )
Nominalmb — — . .
Policy EL * Highly parallelizable
VAN * Near real-time computation
(with naive implementation)
Replan NZ

(receding-horizon)
Perturbed control schedule

A 4

40 Stanford University



Theoretical Aspects L:n.nsJ

Optimization Problem:

/P f SACBP: \
roperty of SAC minimize ]E(y1 ,,,,, i) [%—+J(b, uw)‘ _0]
w,T €
In expectation sub: _
ject to [p(4 = g(b(t;),yx) kefl,....K}
performs no worse than { § b -
the given nominal policy, b(t) = fb(t), ult))  t € [t tha]
with an appropriate choice of €

. w ift €[t —e,7]
\ / tu(t) = {un(t) otheerwise.

[To be submitted to IJRR]
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Results: Active Multi-Target Tracking

1. Active Multi-Target Tracking with Range-only Observations

Ergodic

MCTS-DPW

42 Stanford University



Results: Active Multi-Target Tracking =|\.,|5|_
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Results: Manipulation under Model Uncertainty |@msL

2. Object Manipulation under Model Uncertainty

45 Stanford University



Results: Manipulation under Model Uncertainty L:I\.IISJ
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Summary
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Algorithms for Information-Theoretic Active Sensing:

Rapidly-Exploring Random Cycles
(RRC/RRC*)

* Discrete-Time Linear Gaussian Systems

* Persistent Surveillance/Monitoring
[X.Lan and M. Schwager, IEEE T-RO 2016]

47

Monte Carlo Tree Search with
Double-Progressive Widening
(MCTS-DPW)

Current belief

. \\"
Control input ﬁ

Discrete-Time Nonlinear Non-Gaussian
Systems

* Active Intent Inference
[H. Nishimura and M. Schwager, ICRA 2018]

Sequential Action Control for

Belief Space Planning
(SACBP)

),."-—-"’—_‘—. T Belief Space

t

* Continuous-Time Nonlinear Non-
Gaussian Systems

* Multi-Target Tracking, etc.
[H. Nishimura and M. Schwager, WAFR 2018]
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