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Mobile Robots in Real-World, 2010s
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Mobile Robots in Real-World, 2010s

Knightscope Security Robot, 2017

Security robot ‘in critical condition’ after

nearly drowning on the job
— CNN, July 2017

TECH

Security Robot Suspended After Colliding With a Toddler

Robot was on duty at a shopping center in California when the accident occurred

— WSJ, July 2016
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Differences in Environments
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Robots in Real-World, 202X

g Stanford University



Uncertainty in Open & Interactive Environments

e N
1. Uncertainty about the current state | om0

« Limited perception

Robots should
actively reduce uncertainty
using onboard perception.
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Uncertainty in Open & Interactive Environments

Vs

1. Uncertainty about the current state

» Limited perception

@ Robots should
actively reduce uncertainty
M using onboard perception.

2. Uncertainty about the future states

* Inherentrandomness
* Imperfectknowledge about models

Robots should
be resilient to uncertainty
(rare but catastrophic events).
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Online Trajectory Planning Algorithms for Robotic Systems ®
under Uncertainty in Interactive Environments ®MSL

* Model-based approachwhen possible
« Probabilistic treatment of uncertainty

Active Reduction of Uncertainty Resilience to Randomness Resilience to Imperfect Models

&

&

[Nishimura & Schwager, ICRA 2018] [Nishimura, Ivanovic, Gaidon, Pavone &

[Nishimura, Mehr, Gaidon & Schwager, RA-L
[Nishimura & Schwager, WAFR 2018] Schwager, IROS 2020] 2021]
[Nishimura & Schwager, IJRR 2021]
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Online Trajectory Planning Algorithms for Robotic Systems
under Uncertainty in Interactive Environments

Model-based approachwhen possible
Probabilistic treatment of uncertainty

&

-

minimize

control policy

subject to

t=0

Stochastic Dynamics

Actuation Limits

r N
J (Z Costy, Distr.)
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Online Trajectory Planning Algorithms for Robotic Systems
under Uncertainty in Interactive Environments

* Model-based approachwhen possible

« Probabilistic treatment of uncertainty

Model Predictive Control

i )
t=1 fe\ minimize ~ J (Z Cost, Distr.)
control policy t=1

subject to Stochastic Dynamics

\ Actuation Limits

/
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Online Trajectory Planning Algorithms for Robotic Systems
under Uncertainty in Interactive Environments

* Model-based approachwhen possible

» Probabilistic treatment of uncertainty

Active Reduction of Uncertainty Resilience to Randomness Resilience to Imperfect Models

&

&

[Nishimura & Schwager, ICRA 2018] [Nishimura, Ivanovic, Gaidon, Pavone &

[Nishimura, Mehr, Gaidon & Schwager, RA-L
[Nishimura & Schwager, WAFR 2018] Schwager, IROS 2020] 2021]
[Nishimura & Schwager, IJRR 2021]
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A Look at Human Intelligence

Humans have a natural ability to actively reduce uncertainty via perception,
driven by...

1. extrinsic motivation (i.e. task-oriented)

C. Kidd and B.Y. Hayden, “The psychologyand neuroscience of curiosity,” Neuron, 88(3), 2015, pp.449-460.
J. Gottlieb and P.Y. Oudeyer, “Towards a neuroscience ofactive sampling and curiosity,” Nature Reviews Neuroscience, 19(12),2018, pp.758-770.
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A Look at Human Intelligence

Humans have a natural ability to actively reduce uncertainty via perception,
driven by...

1. Extrinsic motivation (i.e. task-oriented) 2. Intrinsic motivation (i.e. curiosity)

’s—" .

(e

C. Kidd and B.Y. Hayden, “The psychologyand neuroscience of curiosity,” Neuron, 88(3), 2015, pp.449-460.
J. Gottlieb and P.Y. Oudeyer, “Towards a neuroscience of active sampling and curiosity,” Nature Reviews Neuroscience, 19(12),2018, pp.758-770.
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Computational Model — Belief Space Planning

Uncertainty reduction can be posed as a minimization problem
based on probabilistic (Bayesian) inference.

control u

F 3

observation y

y

belief b

Belief:
State Transition:
Observation:

Belief Dynamics:

-

b p(x;b)

X
p(a’ | z,u)
p(y | z')

v =g(b,u,y’)

p(a’;b) =

np(y' | 93’)/)(19(99’ |z, u)p(z; b)dx

S.C.H. Yang et al., “Theoretical perspectives on active sensing,” Current Opinion in Behavioral Sciences, 11,2016.pp.100-108.
J. Gottlieb and P.Y. Oudeyer, “Towards a neuroscience of active sampling and curiosity,” in Nature Reviews Neuroscience, 19(12),2018, pp.758-770.
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Computational Model — Belief Space Planning

Uncertainty reduction can be posed as a minimization problem

based on probabilistic (Bayesian) inference.

15

F 3

control u

state x

observation y

y

belief b

Policy: u = 7(b)

Belief-based Cost:  J(u,b)

J(u,b) = Eb(a:) lc(x, u)] =) Task-oriented

J(u,b) = H(b) =) Intrinsically-motivated
(e.g. Entropy)
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®
History of Belief Space Planning in Robotics LQMSJ

Partially Observable Markov Decision Processes (Task-oriented)
« K. J. Astrém, “Optimal control of Markov processes with incomplete state information,” Journal of
Mathematical Analysis and Applications, 10, 1965, pp. 174-205.

« L. P. Kaelbling et al., “Planning and acting in partially observable stochastic domains,” Artificial
Intelligence, 101(1-2), 1998, pp. 99-134.
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®
History of Belief Space Planning in Robotics L.MSIJ

Partially Observable Markov Decision Processes (Task-oriented)

« K. J. Astrém, “Optimal control of Markov processes with incomplete state information,” Journal of
Mathematical Analysis and Applications, 10, 1965, pp. 174-205.

» L. P. Kaelbling et al., “Planning and acting in partially observable stochastic domains,” Artificial
Intelligence, 101(1-2), 1998, pp. 99-134.

Active Perception (Intrinsically-motivated)

» J. M. Tenenbaum, “Accommodation in computer vision,” Ph.D. Thesis, Computer Science
Department Report, No. CS182, Stanford University, 1970.

* R. Bajcsy, “Active perception,” in Proc. of the IEEE, 76(8), 1988, pp. 966-1005.
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Example Robotic Applications

1. Task-oriented Uncertainty Reduction 2. Intrinsically-motivated Uncertainty Reduction
. Time: 0.2 [s]
. Time: 0.00 [s] : Targets
:
rof| = tn e . ©®
E 05 E )
- 0.0 0 [
1 0 X [m] 1 2 VIU-IEI 0 10 < IZ:n] 30 40 SIEI
Uncertainty: Parameters of plate dynamics Uncertainty: Positions of moving targets
Perception: Noisy pos., vel., acc. measurements Perception: Noisy range measurements
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Prior Work: Belief Space Planning

Exact optimization is intractable due to
1. High-dimensionality and continuity of belief space b

2. Stochasticity in future observations

Greedy

. F. Bourgault et al., “Information based adaptive robotic exploration,” in Proc. IROS, 2002, pp. 540-545.

Tree Search (Generic POMDP or Belief Space Planner)
. A. Couétoux et al., “Continuous Upper Confidence Trees,” in Proc. LION, 2011, pp. 443-445.
. A. Somani et al., “Despot: online pomdp planning with regularization,” in Proc. NeurlPS, 2013, pp. 1772-1780.

. Z. Sunberg and M.J. Kochenderfer, “Pomcpow: an online algorithm for pomdps with continuous state, action, and observation spaces,”
in Proc. ICAPS, 2018, pp. 259-263.

Local Trajectory Optimization
. R. Platt et al., “Belief space planning assuming maximum likelihood observations,” in RSS, 2010.

. J. van den Berg et al., “Motion planning under uncertainty using iterative local optimization in belief space,” 1JRR, 31(11), 2012, pp.
1263-1278.
. M. Rafieisakhaei et al., “T-lqg: closed-loop belief space planning via trajectory-optimized Iqg,” in Proc. ICRA, 2017, pp. 649-656.
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Greedy Approach

Toy Problem: 1D Manipulation, without Uncertainty

Ignore future

Force Control

20 Stanford University



Prior Work: Belief Space Planning

Greedy
+  Computationally efficient
* Ignores long-term effect of current action.

Tree Search (Generic POMDP or Belief Space Planner)
. A. Couétoux et al., “Continuous Upper Confidence Trees,” in Proc. LION, 2011, pp. 443-445.
. A. Somani et al., “Despot: online pomdp planning with regularization,” in Proc. NeurlPS, 2013, pp. 1772-1780.

. Z. Sunberg and M.J. Kochenderfer, “Pomcpow: an online algorithm for pomdps with continuous state, action, and observation spaces,”
in Proc. ICAPS, 2018, pp. 259-263.

Local Trajectory Optimization
. R. Platt et al., “Belief space planning assuming maximum likelihood observations,” in RSS, 2010.

. J. van den Berg et al., “Motion planning under uncertainty using iterative local optimization in belief space,” 1JRR, 31(11), 2012, pp.
1263-1278.

. M. Rafieisakhaei et al., “T-lqg: closed-loop belief space planning via trajectory-optimized Iqg,” in Proc. ICRA, 2017, pp. 649-656.
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Tree Search Approach

Toy Problem: 1D Manipulation, without Uncertainty Simulate many possible

scenarios, pick best one.

time

Start Goal

Action Space = {I >, T, T3, < 1}

pp) Stanford University



Prior Work: Belief Space Planning

Tree Search (Generic POMDP or Belief Space Planner)

* Asymptotic convergence to (near-) optimal policies under certain assumptions
* Actions are noisy with finite samples.

* High sample complexity

Local Trajectory Optimization

. R. Platt et al., “Belief space planning assuming maximum likelihood observations,” in RSS, 2010.

. J. van den Berg et al., “Motion planning under uncertainty using iterative local optimization in belief space,” 1JRR, 31(11), 2012, pp.
1263-1278.

. M. Rafieisakhaei et al., “T-lqg: closed-loop belief space planning via trajectory-optimized Iqg,” in Proc. ICRA, 2017, pp. 649-656.
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Local Trajectory Optimization

Toy Problem: 1D Manipulation, without Uncertainty _ _ _
Iteratively refine space-time

trajectory using physics model.

o
) o
Start Goal
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Prior Work: Belief Space Planning

Local Trajectory Optimization

+ Convergence to locally optimal open-loop (or closed-loop) policy

« Often ignores stochasticity of future observations.

* Many iterations and long computation time to reach convergence

25 Stanford University




Our Work: Stochastic Sequential Action Control

Local Perturbation of Nominal Policy

+ Computationally efficient (two-step optimization)
« Considers long-term effect & stochasticity

» Outperforms conventional methods

Greedy
« Computationally efficient
 Ignores long-term effect of current action.

Tree Search (Generic POMDP or Belief Space Planner)
* Asymptotic convergence to (near-) optimal policies under certain assumptions

* Actions are noisy with finite samples.
* High sample complexity

Local Trajectory Optimization

* Convergence to locally optimal open-loop (or closed-loop) policy

 Often ignores stochasticity of future observations.

* Many iterations and long computation time to reach convergence

26
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Local Perturbation of Nominal Policy

Toy Problem: 1D Manipulation, without Uncertainty

o
) o
Start Goal

Start with an imperfect nominal policy, which would fail if not modified.

28
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Local Perturbation of Nominal Policy

Toy Problem: 1D Manipulation, without Uncertainty

o
) o
Start Goal

Start with an imperfectnominal policy.

29
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Local Perturbation of Nominal Policy

Toy Problem: 1D Manipulation, without Uncertainty

= e

Start Goal

Intervene and perturb the system with an impulsive control.

30
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Local Perturbation of Nominal Policy

Toy Problem: 1D Manipulation, without Uncertainty

o
) o
Start Goal

Repeatthis process fastuntil task done.

31
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Impulsive Perturbation = “Mode Insertion Gradient”

C—

Optimal perturbation for deterministic systems is known by
prior work (Sequential Action Control).

A. Ansari and T.D. Murphey, “Sequential action control: closed-form optimal control for
nonlinear and nonsmooth systems,” T-RO, 32(5), 2016, pp. 1196-1214.

[

We extend the method to stochastic hybrid systems with time-driven switching
(Stochastic SAC).

32 Stanford University



Mode Insertion Gradient Optimization

Optimization can be done efficiently, in 2 steps.

1. Simulate stochastic system under (imperfect) nominal policy.

i,
: |:> Belief Trajectory:  b(%)

CU"CF:ZF:-:;?i_ﬁ‘rnsetate "’. 1 "‘_t {ygz), ’ygﬂ)}
| ey <:| Adjoint Trajectory: p(t)

Solve a quadratic minimization problem for the perturbation variable.

minimize 2™ Ro + Elp(r)] " H(b(r)(v — u(r)

33 Stanford University
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MCTS-DPW (Tree Search)

Time: 0.00 [s]
e
— o —2
MCTS-DPW: Slade et al., IROS 2017.
T-LQG: Rafieisakhaei et al., ICRA 2017.
Belief iLQG : van den Berg et al., JRR 2012.
1 o x[m] 1 2
T-LQG (Traj. Opt.) Belief iLQG (Traj. Opt.)
Time: 0.00 [s] . Time: 0.00 [s]
s o o
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. .
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y [m]

15

10H

05

0.0

-1.0

Stochastic SAC (Ours)
Time: 0.00 [s]

Object
@ CMm
@ PFRobot
——— Lin. Vel. .

:ng.v\."‘lal. =

Goal

0 1 2

X [m]
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Results

Manipulation Error

—. = MCTS-DPW
L0 T-LQG

F .. BeliefiLQG
=1 SACBP (Ours)

Stochastic SAC achieves the best performance
under a limited time budget.

Residual Norm

Time [s]

MCTS-DPW: Slade et al., IROS 2017.
T-LQG: Rafieisakhaei et al., ICRA 2017. . .
36 Belief iLQG : van den Berg etal., JRR 2012. Stanford University



Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments

* Model-based approachwhen possible
» Probabilistic treatment of uncertainty

Active Reduction of Uncertainty

Formulated as
Belief Space Planning

Proposed Stochastic SAC
Computationally efficient

Handles stochasticity

Considers long-term effect

Resilience to Randomness

[Nishimura, Ivanovic, Gaidon, Pavone &
Schwager, IROS 2020]

Resilience to Imperfect Models

&

P
“w
D
“»

[Nishimura, Mehr, Gaidon & Schwager, RA-L
2021]
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Online Trajectory Planning Algorithms for Robotic Systems
under Uncertainty in Interactive Environments

* Model-based approachwhen possible

» Probabilistic treatment of uncertainty

Active Reduction of Uncertainty Resilience to Randomness Resilience to Imperfect Models

&

&

[Nishimura & Schwager, ICRA 2018] [Nishimura, Ivanovic, Gaidon, Pavone &

[Nishimura, Mehr, Gaidon & Schwager, RA-L
[Nishimura & Schwager, WAFR 2018] Schwager, IROS 2020] 2021]
[Nishimura & Schwager, IJRR 2021]
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“Rare but Catastrophic”™ Events

_Prob. Density

05/01/2019 05:51:36 AUKEY DRO3

Tesla-Subaru Accident on Highway, UT, USA
Cost
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Risk-Aware Planning for Interactive Navigation

N Prob. Density

Optimizing the expected value does not suffice.

How should robots plan their future motion under
multi-modal & long-tailed distributions?

Cost

43 Stanford University



Prior Work: Risk-Aware Planning & Robot Navigation

Deep Reinforcement Learning

. M. Everett et al., “Motion planning among dynamic, decision-making agents with deep reinforcement learning,” in Proc. IROS, 2018,
pp. 3052-3059.

. C. Chen et al., “Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning,” in Proc.
ICRA, 2019, pp. 6015-6022.

Chance-Constrained Planning

. L. Blackmore et al., “Chance-constrained optimal path planning with obstacles,” T-RO, 27(6), 2011, pp. 1080-1094.

. A. Wang et al., “Non-Gaussian chance-constrained trajectory planning for autonomous wehicles under agent uncertainty,” RA-L, 5(4),
2020, pp. 6041-6048.

Conditional Value at Risk (CVaR) Optimization

. Y. Chow et al., “Risk-sensitive and robust decision making: acvar optimization approach,” in Proc. NeurlPS, 2015, pp. 1522-1530.

. S. Samuelson and I. Yang, “Safety-aware optimal control of stochastic systems using conditional value-at-risk,” in Proc. ACC, 2018,
pp. 6285-6290.

Risk-Sensitive Optimal Control

. P. Whittle, “Risk-sensitive linear/quadratic/gaussian control,” Advances in Applied Probability, 13(4), 1981, pp. 764—777.

. F. Farshidian and J. Buchli, “Risk-sensitive, nonlinear optimal control: iterative linear exponential-quadratic optimal control with
gaussian noise,” arXiv preprint arXiv:1512.07173, 2015.
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Prior Work: Risk-Aware Planning & Robot Navigation

Deep Reinforcement Learning

* No online computation needed

* Not risk-aware

* Training with real human-robot interaction is hard

Chance-Constrained Planning

. L. Blackmore et al., “Chance-constrained optimal path planning with obstacles,” T-RO, 27(6), 2011, pp. 1080-1094.

. A. Wang et al., “Non-Gaussian chance-constrained trajectory planning for autonomous wehicles under agent uncertainty,” RA-L, 5(4),
2020, pp. 6041-6048.

Conditional Value at Risk (CVaR) Optimization

. Y. Chow et al., “Risk-sensitive and robust decision making: acvar optimization approach,” in Proc. NeurlPS, 2015, pp. 1522-1530.

. S. Samuelson and I. Yang, “Safety-aware optimal control of stochastic systems using conditional value-at-risk,” in Proc. ACC, 2018,
pp. 6285-6290.

Risk-Sensitive Optimal Control

. P. Whittle, “Risk-sensitive linear/quadratic/gaussian control,” Advances in Applied Probability, 13(4), 1981, pp. 764—777.

. F. Farshidian and J. Buchli, “Risk-sensitive, nonlinear optimal control: iterative linear exponential-quadratic optimal control with
gaussian noise,” arXiv preprint arXiv:1512.07173, 2015.
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Prior Work: Risk-Aware Planning & Robot Navigation

Chance-Constrained Planning

Constraint: P(X € Xope) > 1 - A

Conditional Value at Risk (CVaR) Optimization Risk-Sensitive Optimal Control

Objective: CVaR, o(cost) Obijective: Rpo(cost)
1

= E, [cost | cost > VaR,, ,(cost)] 6

log E,, [exp(# - cost)]

+ Limited to unimodal (e.g. Gaussian) distributions, linear systems, and/or discrete problems.
Exception is Wang et al. (2020), but can be overly conservative for interaction with many agents.

A. Wang et al., “Non-Gaussian chance-constrained trajectoryplanning forautonomous vehicles under agentuncertainty,” . .
46 RAL, 5(4), 2020, pp. 6041-6048. Stanford University




Our Work: Risk-Sensitive Sequential Action Control

Extension of Stochastic SAC to Risk-Sensitive Optimal Control
* Nonlinear systems

« Arbitrary distributions

« Scalable to interaction with ~50 humans

Chance-Constrained Planning

Constraint:
Conditional Value at Risk (CVaR) Optimization Risk-Sensitive Optimal Control
Obijective: Objective: R;.g(cost)

= % log E,, [exp(# - cost)]

 Limited to unimodal (e.g. Gaussian) distributions, linear systems, and/or discrete problems.
Exception is Wang et al. (2020), but can be overly conservative for interaction with many agents.
47 Stanford University




System Model

Stochastic Hybrid System with Time-Driven Switching

// N

| \
I |
. ) '
I .o I
I i ) 7 : :
: (1) = f(x(2) + H (x(t)) u(?) Pes1=pi+yi {vif}~p |
|

: |
:  Continuous-Time * Discrete-Time :
|

| e Deterministic « Stochastic :
|

| « Control-Affine * Arbitrary Distribution I'
\\ /

S e e e e e e - Y e 7
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Entropic Risk Objective

Rpo(J) = logE [exp(6.J)] N

9

~E,[J] + gVar,p(J) Al il el > Variance

Mean Variance

J :{Collision, Tracking, Control} Cost

6 : Risk-Sensitivity Parameter ,

|
Risk-Neutral Risk-Sensitive
< E 22 s >
=0 >0

49 Stanford University
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Mode Insertion Gradient for Entropic Risk

Expected Mode Insertion Gradient (Stochastic SAC):

L 7
—v R
2v v+

Elp(7)]"

H(2(7)) (v — u(7))

Risk-Sensitive Mode Insertion Gradient (this work):

L 7
—v R
2@ v+

50

Elexp(67)p(T)]"

R @) —u(m)

Current State
Current Time

|:> State Trajectory: (1)
<:| Adjoint Trajectory: p(t)

Stanford University



Generative Behavior Prediction: V¥ Trajectron+

Q.. | &

1Y
0.
7 N\

1
L gl [ DS
......Q--:" ' R
2 - i @
g R <G S S S U R R U ———.

’

Node History i

eee [LSTM LSTM
*xUEE S e
Edge

see (LSTM
W ATAEBAATA

EEED

p(zlx,M,y,.)

Map
©

L J
( Robot Future ) .
ess (LSTM LSTM =
x(:u‘-l)l : xgﬂ'l st
" 4
( Node Future ) _
eee (LSTM LSTM
x(lw(T»l)) : x(lwr)
~ J

Decoder |

;9]

Jex,a;Z:y(‘>] e niz

LEGEND

0 Dynamics Integration

F
Dense Layer

Random Sampling
& Concatenation
~— Offline Training

Online Inference

Both

T. Salzmann, B. lvanovic, P. Chakravarty, and M. Pavone, “Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous

data,” in ECCV, 2020.
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Robot-Future-Conditional Prediction

ylm]

10

Robot Going Up Robot Going Down

52

Time: 6.00 [s] Time: 6.00 [s]
10
e Sk
= — 6
i — E -
=] h " = o = o
o i o
. Ego Robot . Ego Robot
Velocity Velocity
Target Trajectory Target Trajectory
Ego Goal 2= * Ego Goal
=== Ego Nominal Trajectory = :=.=  Ego Nominal Trajectory
s 0 s
0 2 - 6 8 10 12 2 0 2 4 6 8 10 12
x{m] x[m]

Stanford University



Simulation Benchmark for Risk-Neutral Robot

15

m]

10

05

Min. Dist. to Human [

0.0

54

(a) ETH Safer & More Efficient
a

Nominal Search
Exhausitve Search
BIC

ade

| |
CrowdNav

+* R55AC

! i | ---- Collision Line
[

yim]

1 1
05 0.4 0.3 0.2 01 0.0
Normalized Distance to Goal

Time: 0.00 [s]
B ““%m“‘ ¥
...... E— -
@ EgoRobot
Velocity
Target Trajectory
H# Ego Goal
2 0 2 4 5 8 10 12

Exhaustive Search: E. Schmerling et al., “Multimodal probabilistic model-based planning for human-robot interaction,” in Proc. ICRA, 2018, pp. 3399-3406.

BIC: Wang et al., “Safe distributed lane change maneuv ers for multiple autonomous v ehicles using buffered input cells.” in Proc. ICRA, 2018, pp. 4678-4684.

CrowdNav: C. Chen et al., “Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning,” in Proc. ICRA, 2019, pp. 6015-6022.
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¥im]

Risk-Sensitivity and Navigation Behavior

Time: 0.00[s] Time: 0.00[s]
* *
7 7 Yielding behavior naturally emerges
from Risk-Sensitivity.
0 = 0.0 (Risk-Neutral) 0 = 1.0 (Risk-Sensitive)

5§ Stanford University



Risk-Sensitivity and Safety

0 = 0.0 (Risk-Neutral) 0 = 1.0 (Risk-Sensitive)

57 Stanford University



Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments

* Model-based approachwhen possible
» Probabilistic treatment of uncertainty

Active Reduction of Uncertainty

Formulated as
Belief Space Planning

Proposed Stochastic SAC
Computationally efficient

* Handles stochasticity

* Considers long-term effect

Resilience to Randomness

Formulated as
Risk-Sensitive Optimal Control

Proposed Risk-Sensitive SAC

*Nonlinear systems
Arbitrary distributions

*Scalable to interaction with ~50 humans

Resilience to Imperfect Models

~3

&

P
“»
D
“»

[Nishimura, Mehr, Gaidon & Schwager, RA-L
2021]
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Online Trajectory Planning Algorithms for Robotic Systems
under Uncertainty in Interactive Environments

* Model-based approachwhen possible

» Probabilistic treatment of uncertainty

Active Reduction of Uncertainty Resilience to Randomness Resilience to Imperfect Models

&

&

[Nishimura & Schwager, ICRA 2018] [Nishimura, Ivanovic, Gaidon, Pavone &

[Nishimura, Mehr, Gaidon & Schwager, RA-L
[Nishimura & Schwager, WAFR 2018] Schwager, IROS 2020] 2021]
[Nishimura & Schwager, IJRR 2021]
60
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Distributional Model Mismatch

Model Distribution: g(w) True Distribution: p(w)

= - O

LY
v
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yim]

Distributional Model Mismatch

62

Time: 0.00 [s]
*
o
a
@ Ego Robot
Velocity
e Target Trajectory

Y Ego Goal

|

[¢]

4 6 8 10 12
x(m]

Imperfect models alone can lead to
disastrous failure.

R. Cheng et al., “Limits of probabilistic safety guarantees
when considering human uncertainty,” in Proc. ICRA, 2021.

“No model is perfect, but some are useful.”
— every roboticist

Stanford University



Set of Possible Models — Ambiguity Set

/I\/Iodel Distribution\

.

p LI
x)\fﬁue Distribution\
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S : Set of All Possible Distributions




Set of Possible Models — Ambiguity Set
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Prior Work: Distributionally Robust Control

Key Idea: Planning against a worst-case distribution out of the ambiguity set.

Moment-based Ambiguity Set

. B.P.G. Van Parys et al., “Distributionally robust control of constrained stochastic systems,” TAC, 61(2), 2016, pp. 430-442.

. S. Samuelson and |. Yang, “Data-driven distributionally robust control of energy storage to manage wind power fluctuations, in Proc.
CCTA, 2017, pp. 199-204.

Wasserstein Metric-based Ambiguity Set
. A. Hakobyan and I. Yang, “Wasserstein distributionally robust motion planning and control with safety constraints using conditional
value-at-risk,” in Proc. ICRA, 2020, pp. 490-496.

f-divergence-based Ambiguity Set

. I. R. Petersen et al., “Minimax optimal control of stochastic uncertain systems with relative entropy constraints,” TAC, 45(3), 2000,
pp. 398-412.

. A. Sinha et al., “Formulazero: distributionally robust online adaptation via offline population synthesis,” in Proc. ICML, 2020, pp.
8992-9004.
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Prior Work: Distributionally Robust Control

Planning is against a worst-case distribution out of the ambiguity set.

Moment-based Ambiguity Set
* Only need moments such as mean and variance.
« Oftenoverly conservative

Wasserstein Metric-based Ambiguity Set
. A. Hakobyan and I. Yang, “Wasserstein distributionally robust motion planning and control with safety constraints using conditional
value-at-risk,” in Proc. ICRA, 2020, pp. 490-496.

f-divergence-based Ambiguity Set

. I. R. Petersen et al., “Minimax optimal control of stochastic uncertain systems with relative entropy constraints,” TAC, 45(3), 2000,
pp. 398-412.

. A. Sinha et al., “Formulazero: distributionally robust online adaptation via offline population synthesis,” in Proc. ICML, 2020, pp.
8992-9004.
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Prior Work: Distributionally Robust Control

Planning is against a worst-case distribution out of the ambiguity set.

Wasserstein Metric-based Ambiguity Set

f-divergence-based Ambiguity Set
« Existing solution methods are not for nonlinear systems with continuous distributions.
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Our Work: Risk Auto-Tuning Iterative LOQR

KL-divergence-based Ambiguity Set & Risk-Sensitive Optimal Control
« Based ontheory developed by Petersen et al. (2000).

y Nonlinear SyStemS I. R. Petersen et al., “Minimax optimal control of stochastic uncertain
° Continuous Distributions systems with relative entropy constraints,” TAC, 45(3), 2000, pp. 398-412.

Locally-optimal feedback policy

f-divergence-based Ambiguity Set
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Distributional Robustness and Risk-Sensitivity

min |\max|E,[J] P : True distribution (unknown)
KeA | peA

A={peS:Dky(plg <d}

A : Ambiguity set (known)

A : FeedbackPolicy Class (known)

Petersen et al. (2000)
Lagrange Duality & Variational Representation of KL-Divergence

+ —
0 0 : Risk-Sensitivity Parameter

min I(min Ryo(J)

d R,.6(:) : Entropic Risk Objective
ol KeA

Distributional robustness yields Risk-aware Planning with optimal risk-sensitivity.

l. R. Petersen et al., “Minimax optimal control of stochastic uncertain systems with relative entropy constraints,” . .
69  TAC, 45(3), 2000, pp. 398-412. Stanford University



Bilevel Optimization for Locally-Optimal Policy

d
min | min R,o(J) | + = q : Gaussian distribution (known)
el \KeA — 6

Intractable to achieve global optimality for nonlinear systems!
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Bilevel Optimization for Locally-Optimal Policy

ol KeA

Inner-Loop Problem (Risk-Sensitive Optimal Control)
min Rqg(J)
Trt1 = (T, ur) + 9Tk, up)wy wi ~ q(w)

iterative LEQG Algorithm
]C*(k, .’L‘) = Lk(x — .Tk) + I

. . d
min (mm Rq,G(J)) T 9 Risk Auto-Tuning lterative LOR (RAT ILQR)

Outer-Loop Problem

= d
bap Haol) + 3

I'={0>0:R;,J)<oc}

Cross Entropy Method




Model Distribution True Distribution

x[m] x [m]

Time: 0.0 [s] Time: 0.0 [s]
Time: 0.0 [s]
. Reference Trajectory . Reference Trajectory o
KL Bound: 32.02 = vt KL Bound: 0.00 = rooo e o Tt
=1 Pedestrian = Pedestrian

sof 9*: 3.96 50 6*: 0.00 e

501 Robot (Model Prediction)
Pedestrian (Model Prediction)

25 25

25

y [m]

y [m]
»

sof @ 50 ® sot ®

0.0 25 5.0 75 100 00 a5 50 75 100 EIIB 2!5 S‘D 7!5 ZLEII o
x [m] x [m] x[m]

RAT iLQR (Ours) ILQG PETS

0/30 Collisions 1/30 Collisions 4/30 Collisions
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Benefits of Risk Auto-Tuning

Conventional Risk-Sensitive Optimal Control RAT iLQR

* No absolute scale * No need for manual tuning

» Task-dependency
Q.
o
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Efficiency of Risk Auto-Tuning

Conventional Risk-Sensitive Optimal Control

g

0/30 Collisions

Avg. Tracking Error: 0.38

75

RAT iLQR

TN
&

0/30 Collisions

Avg. Tracking Error: 0.32
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Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments

* Model-based approachwhen possible
» Probabilistic treatment of uncertainty

Active Reduction of Uncertainty

Formulated as
Belief Space Planning

Proposed Stochastic SAC

*  Computationally efficient
* Handles stochasticity
* Considers long-term effect

*  Outperforms prior methods

Resilience to Randomness

Formulated as
Risk-Sensitive Optimal Control

Proposed Risk-Sensitive SAC
*Nonlinear systems

Arbitrary distributions

*Scalable to interaction with ~50 humans

Resilience to Imperfect Models

Formulated as
Distributionally Robust Control

Proposed RAT ILQR

* Based on Risk-Sensitive Control
* Nonlinear Systems
e Continuous Distributions

» Locally-optimal feedback policy

76
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Planning Module # Autonomy Stack

Sensors

77

____________________________________________________

Autonomy Stack

1
.« Dynamics Models

| +  Uncertainty Quantification
1

:

1

Planning/Control
under »
Uncertainty

Actuators
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Planning as Part of Data-Driven Systems

Autonomy Stack

Learned
Perception Planning/Control
Sensors * under ‘ Actuators
Learned Uncertainty
Prediction
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