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Mobile Robots in Real-World, 2010s

2

Knightscope Security Robot, 2017

Amazon Warehouse Robots, 2016 Ocado Grocery Packing Robots, 2018

https://youtu.be/hevPwkH0D 0k
https://youtu.be/ssZ_8cqfBlE



Mobile Robots in Real-World, 2010s

3
https://www.cnn.com/2017/07/18/us/security-robot-drown-trnd/index .html
https://www.wsj.com/articles/security-robot-suspended-after-colliding-with-a-toddl er-

1468446311?s t=z82ea0cmiu2kqsf&reflink=desk topwebshar e_permalink

Knightscope Security Robot, 2017

― CNN, July 2017 

― WSJ, July 2016 



Differences in Environments

4 http://www.fruitnet.com/fpj/article/176666/ocado-robots-ramping-up-capacity
https://www.kqed.org/science/1943240/these-bay- area-robots-ar e-cool-but-they-freak-me-out-anyway



Robots in Real-World, 202X

5
https://www.mydronelab.com/blog/drone-uses.html
https://shorturl.at/nBNO0

https://shorturl.at/uHOUX



Uncertainty in Open & Interactive Environments

6

1. Uncertainty about the current state

• Limited perception

Robots should 

actively reduce uncertainty

using onboard perception.   



Uncertainty in Open & Interactive Environments

7

1. Uncertainty about the current state

2. Uncertainty about the future states

• Limited perception

Robots should 

actively reduce uncertainty

using onboard perception.   

• Inherent randomness

• Imperfect knowledge about models

Robots should

be resilient to uncertainty

(rare but catastrophic events). 



Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments
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• Model-based approach when possible

• Probabilistic treatment of uncertainty

Active Reduction of Uncertainty Resilience to Randomness Resilience to Imperfect Models

[Nishimura & Schwager, ICRA 2018]

[Nishimura & Schwager, WAFR 2018]

[Nishimura & Schwager, IJRR 2021]

[Nishimura, Ivanovic, Gaidon, Pavone & 

Schwager, IROS 2020]

[Nishimura, Mehr, Gaidon & Schwager, RA-L 

2021]



Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments
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• Model-based approach when possible

• Probabilistic treatment of uncertainty



Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments
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• Model-based approach when possible

• Probabilistic treatment of uncertainty

Model Predictive Control
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• Model-based approach when possible

• Probabilistic treatment of uncertainty

Active Reduction of Uncertainty Resilience to Randomness Resilience to Imperfect Models

[Nishimura & Schwager, ICRA 2018]

[Nishimura & Schwager, WAFR 2018]

[Nishimura & Schwager, IJRR 2021]

[Nishimura, Ivanovic, Gaidon, Pavone & 

Schwager, IROS 2020]

[Nishimura, Mehr, Gaidon & Schwager, RA-L 

2021]

Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments



A Look at Human Intelligence

Humans have a natural ability to actively reduce uncertainty via perception,

driven by…

12
https://youtu.be/vt3E45tjJao

C. Kidd and B.Y. Hayden, “The psychologyand neuroscience of curiosity,” Neuron, 88(3), 2015,pp.449-460.
J. Gottlieb and P.Y. Oudeyer, “Towards a neuroscience of active sampling and curiosity,” Nature Reviews Neuroscience, 19(12), 2018,pp.758-770.

1. extrinsic motivation (i.e. task-oriented)



A Look at Human Intelligence

Humans have a natural ability to actively reduce uncertainty via perception,

driven by…
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1. Extrinsic motivation (i.e. task-oriented) 2. Intrinsic motivation (i.e. curiosity)

https://youtu.be/tsLD _UGYJ6Y

C. Kidd and B.Y. Hayden, “The psychologyand neuroscience of curiosity,” Neuron, 88(3), 2015,pp.449-460.
J. Gottlieb and P.Y. Oudeyer, “Towards a neuroscience of active sampling and curiosity,” Nature Reviews Neuroscience, 19(12), 2018,pp.758-770.



Computational Model – Belief Space Planning

Uncertainty reduction can be posed as a minimization problem 

based on probabilistic (Bayesian) inference.

14

S.C.H. Yang et al., “Theoretical perspectives on active sensing,” Current Opinion in Behavioral Sciences, 11,2016.pp.100-108.
J. Gottlieb and P.Y. Oudeyer, “Towards a neuroscience of active sampling and curiosity,” in Nature Reviews Neuroscience, 19(12), 2018, pp.758-770.

Belief: 

State Transition:

Observation:

Belief Dynamics:   



Computational Model – Belief Space Planning

Uncertainty reduction can be posed as a minimization problem 

based on probabilistic (Bayesian) inference.

15

Policy:

Belief-based Cost:

Task-oriented

(e.g. Entropy)

Intrinsically-motivated



History of Belief Space Planning in Robotics
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Partially Observable Markov Decision Processes (Task-oriented)

• K. J. Åström, “Optimal control of Markov processes with incomplete state information,” Journal of 
Mathematical Analysis and Applications, 10, 1965, pp. 174-205.

• L. P. Kaelbling et al., “Planning and acting in partially observable stochastic domains,” Artificial 

Intelligence, 101(1-2), 1998, pp. 99-134.



History of Belief Space Planning in Robotics

17

Active Perception (Intrinsically-motivated)

• J. M. Tenenbaum, “Accommodation in computer vision,” Ph.D. Thesis, Computer Science 
Department Report, No. CS182, Stanford University, 1970.

• R. Bajcsy, “Active perception,” in Proc. of the IEEE, 76(8), 1988, pp. 966-1005.

Partially Observable Markov Decision Processes (Task-oriented)

• K. J. Åström, “Optimal control of Markov processes with incomplete state information,” Journal of 
Mathematical Analysis and Applications, 10, 1965, pp. 174-205.

• L. P. Kaelbling et al., “Planning and acting in partially observable stochastic domains,” Artificial 

Intelligence, 101(1-2), 1998, pp. 99-134.



Example Robotic Applications

18

1. Task-oriented Uncertainty Reduction

Uncertainty: Parameters of plate dynamics

Perception : Noisy pos., vel., acc. measurements

2. Intrinsically-motivated Uncertainty Reduction

Uncertainty: Positions of moving targets

Perception : Noisy range measurements



Prior Work: Belief Space Planning

Exact optimization is intractable due to

1. High-dimensionality and continuity of belief space

2. Stochasticity in future observations

19

Greedy
• F. Bourgault et al., “Information based adaptive robotic exploration,” in Proc. IROS, 2002, pp. 540-545.

Tree Search (Generic POMDP or Belief Space Planner)
• A. Couëtoux et al., “Continuous Upper Confidence Trees,” in Proc. LION, 2011, pp. 443-445.

• A. Somani et al., “Despot: online pomdp planning with regularization,” in Proc. NeurIPS, 2013, pp. 1772-1780.

• Z. Sunberg and M.J. Kochenderfer, “Pomcpow: an online algorithm for pomdps with continuous state, action, and observation spaces,” 

in Proc. ICAPS, 2018, pp. 259-263.

Local Trajectory Optimization
• R. Platt et al., “Belief space planning assuming maximum likelihood observat ions,” in RSS, 2010.

• J. van den Berg et al., “Motion planning under uncertainty using iterative local optimization in belief space,” IJRR, 31(11), 2012, pp. 

1263-1278.

• M. Rafieisakhaei et al., “T-lqg: closed-loop belief space planning via trajectory-opt imized lqg,” in Proc. ICRA, 2017, pp. 649-656.



Greedy Approach

20

Start Goal

Toy Problem: 1D Manipulation, without Uncertainty

Force Control

Ignore future



Prior Work: Belief Space Planning
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Tree Search (Generic POMDP or Belief Space Planner)
• A. Couëtoux et al., “Continuous Upper Confidence Trees,” in Proc. LION, 2011, pp. 443-445.

• A. Somani et al., “Despot: online pomdp planning with regularization,” in Proc. NeurIPS, 2013, pp. 1772-1780.

• Z. Sunberg and M.J. Kochenderfer, “Pomcpow: an online algorithm for pomdps with continuous state, action, and observation spaces,” 

in Proc. ICAPS, 2018, pp. 259-263.

Local Trajectory Optimization
• R. Platt et al., “Belief space planning assuming maximum likelihood observat ions,” in RSS, 2010.

• J. van den Berg et al., “Motion planning under uncertainty using iterative local optimization in belief space,” IJRR, 31(11), 2012, pp. 

1263-1278.

• M. Rafieisakhaei et al., “T-lqg: closed-loop belief space planning via trajectory-opt imized lqg,” in Proc. ICRA, 2017, pp. 649-656.

Greedy

• Computationally efficient

• Ignores long-term effect of current action.



Tree Search Approach

22

Toy Problem: 1D Manipulation, without Uncertainty

t = 0 t = 1 t = 2

Start Goal

https://www.researchgate.net/figure/Asymmetric-tree-growth- 68_fig2_235985858

time

Action Space = {            ,        ,         ,             }

Simulate many possible 

scenarios, pick best one.



Prior Work: Belief Space Planning
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Tree Search (Generic POMDP or Belief Space Planner)

• Asymptotic convergence to (near-) optimal policies under certain assumptions

• Actions are noisy with finite samples.

• High sample complexity

Local Trajectory Optimization
• R. Platt et al., “Belief space planning assuming maximum likelihood observat ions,” in RSS, 2010.

• J. van den Berg et al., “Motion planning under uncertainty using iterative local optimization in belief space,” IJRR, 31(11), 2012, pp. 

1263-1278.

• M. Rafieisakhaei et al., “T-lqg: closed-loop belief space planning via trajectory-opt imized lqg,” in Proc. ICRA, 2017, pp. 649-656.

Greedy

• Computationally efficient

• Ignores long-term effect of current action.



Local Trajectory Optimization

24

Toy Problem: 1D Manipulation, without Uncertainty

Start Goal

https://www.semanticscholar.org/paper/Solving-Large-scal e-Quadratic-Programs-with-with-to-Miculescu-
Karaman/0b32a9bbba8274db6773345a3b633cbbe4680868/figur e/1

Iteratively refine space-time

trajectory using physics model.



Prior Work: Belief Space Planning
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Tree Search (Generic POMDP or Belief Space Planner)

• Asymptotic convergence to (near-) optimal policies under certain assumptions

• Actions are noisy with finite samples.

• High sample complexity

Local Trajectory Optimization

• Convergence to locally optimal open-loop (or closed-loop) policy

• Often ignores stochasticity of future observations.

• Many iterations and long computation time to reach convergence

Greedy

• Computationally efficient

• Ignores long-term effect of current action.



Our Work: Stochastic Sequential Action Control
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Tree Search (Generic POMDP or Belief Space Planner)

• Asymptotic convergence to (near-) optimal policies under certain assumptions

• Actions are noisy with finite samples.

• High sample complexity

Local Trajectory Optimization

• Convergence to locally optimal open-loop (or closed-loop) policy

• Often ignores stochasticity of future observations.

• Many iterations and long computation time to reach convergence

Greedy

• Computationally efficient

• Ignores long-term effect of current action.

Local Perturbation of Nominal Policy

• Computationally efficient (two-step optimization)

• Considers long-term effect & stochasticity

• Outperforms conventional methods



Local Perturbation of Nominal Policy

28

Toy Problem: 1D Manipulation, without Uncertainty

Start Goal

Start with an imperfect nominal policy, which would fail if not modified.



Local Perturbation of Nominal Policy
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Toy Problem: 1D Manipulation, without Uncertainty

Start Goal

Start with an imperfect nominal policy.



Local Perturbation of Nominal Policy
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Toy Problem: 1D Manipulation, without Uncertainty

Start Goal

Intervene and perturb the system with an impulsive control.



Local Perturbation of Nominal Policy
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Toy Problem: 1D Manipulation, without Uncertainty

Repeat this process fast until task done.

Start Goal



Impulsive Perturbation = “Mode Insertion Gradient”

32

Optimal perturbation for deterministic systems is known by

prior work (Sequential Action Control).

A. Ansari and T.D. Murphey, “Sequential action control: closed-form optimal control for 
nonlinear and nonsmooth systems,” T-RO, 32(5), 2016, pp. 1196-1214.

We extend the method to stochastic hybrid systems with time-driven switching

(Stochastic SAC).



Mode Insertion Gradient Optimization

33

Optimization can be done efficiently, in 2 steps. 

1. Simulate stochastic system under (imperfect) nominal policy.

2. Solve a quadratic minimization problem for the perturbation variable.

Belief Trajectory: 

Adjoint Trajectory: 



35

MCTS-DPW (Tree Search)

T-LQG (Traj. Opt.) Belief iLQG (Traj. Opt.)

Stochastic SAC (Ours)
MCTS-DPW: Slade et al., IROS 2017.

T-LQG:          Rafieisakhaei et al., ICRA 2017.

Belief iLQG :  van den Berg et al., IJRR 2012.



Results

36

Manipulation Error

Stochastic SAC achieves the best performance

under a limited time budget. 

MCTS-DPW: Slade et al., IROS 2017.

T-LQG:          Rafieisakhaei et al., ICRA 2017.

Belief iLQG :  van den Berg et al., IJRR 2012.
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• Model-based approach when possible

• Probabilistic treatment of uncertainty

Resilience to Randomness Resilience to Imperfect Models

[Nishimura, Ivanovic, Gaidon, Pavone & 

Schwager, IROS 2020]

[Nishimura, Mehr, Gaidon & Schwager, RA-L 

2021]

Active Reduction of Uncertainty

Formulated as

Belief Space Planning

Proposed Stochastic SAC

• Computationally efficient

• Handles stochasticity

• Considers long-term effect

Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments



41

• Model-based approach when possible

• Probabilistic treatment of uncertainty

Active Reduction of Uncertainty Resilience to Randomness Resilience to Imperfect Models

[Nishimura & Schwager, ICRA 2018]

[Nishimura & Schwager, WAFR 2018]

[Nishimura & Schwager, IJRR 2021]

[Nishimura, Ivanovic, Gaidon, Pavone & 

Schwager, IROS 2020]

[Nishimura, Mehr, Gaidon & Schwager, RA-L 

2021]

Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments



“Rare but Catastrophic” Events

42
https://youtu.be/iCCmyDLN49k
https://insideevs.com/news/355036/video-tesla-model-3-crash-dashcam-police/

Tesla-Subaru Accident on Highway, UT, USA
Cost

Prob. Density



Risk-Aware Planning for Interactive Navigation

43

Cost

Prob. Density

Optimizing the expected value does not suffice.

How should robots plan their future motion under

multi-modal & long-tailed distributions?



Prior Work: Risk-Aware Planning & Robot Navigation
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Deep Reinforcement Learning
• M. Everett et al., “Motion planning among dynamic, decision-making agents with deep reinforcement learning,” in Proc. IROS, 2018, 

pp. 3052-3059.

• C. Chen et al., “Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning,” in Proc. 

ICRA, 2019, pp. 6015-6022.

Chance-Constrained Planning
• L. Blackmore et al., “Chance-constrained optimal path planning with obstacles,” T-RO, 27(6), 2011, pp. 1080-1094.

• A. Wang et al., “Non-Gaussian chance-constrained trajectory planning for autonomous vehicles under agent uncertainty,” RA-L, 5(4), 

2020, pp. 6041-6048.

Conditional Value at Risk (CVaR) Optimization
• Y. Chow et al., “Risk-sensitive and robust decision making: a cvar optimization approach,” in Proc. NeurIPS, 2015, pp. 1522-1530.

• S. Samuelson and I. Yang, “Safety-aware optimal control of stochastic systems using conditional value-at-risk, ” in Proc. ACC, 2018, 

pp. 6285-6290.

Risk-Sensitive Optimal Control
• P. Whittle, “Risk-sensitive linear/quadratic/gaussian control,” Advances in Applied Probability, 13(4), 1981, pp. 764–777.

• F. Farshidian and J. Buchli, “Risk-sensitive, nonlinear optimal control: iterative linear exponential-quadratic optimal control with 

gaussian noise,” arXiv preprint arXiv:1512.07173, 2015.



Prior Work: Risk-Aware Planning & Robot Navigation

45

Deep Reinforcement Learning

• No online computation needed

• Not risk-aware

• Training with real human-robot interaction is hard

Chance-Constrained Planning
• L. Blackmore et al., “Chance-constrained optimal path planning with obstacles,” T-RO, 27(6), 2011, pp. 1080-1094.

• A. Wang et al., “Non-Gaussian chance-constrained trajectory planning for autonomous vehicles under agent uncertainty,” RA-L, 5(4), 

2020, pp. 6041-6048.

Conditional Value at Risk (CVaR) Optimization
• Y. Chow et al., “Risk-sensitive and robust decision making: a cvar optimization approach,” in Proc. NeurIPS, 2015, pp. 1522-1530.

• S. Samuelson and I. Yang, “Safety-aware optimal control of stochastic systems using conditional value-at-risk, ” in Proc. ACC, 2018, 

pp. 6285-6290.

Risk-Sensitive Optimal Control
• P. Whittle, “Risk-sensitive linear/quadratic/gaussian control,” Advances in Applied Probability, 13(4), 1981, pp. 764–777.

• F. Farshidian and J. Buchli, “Risk-sensitive, nonlinear optimal control: iterative linear exponential-quadratic optimal control with 

gaussian noise,” arXiv preprint arXiv:1512.07173, 2015.



Prior Work: Risk-Aware Planning & Robot Navigation
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Deep Reinforcement Learning

• No online computation needed

• Not risk-aware

• Training with real human-robot interaction is hard

Chance-Constrained Planning                           

Conditional Value at Risk (CVaR) Optimization                Risk-Sensitive Optimal Control

• Limited to unimodal (e.g. Gaussian) distributions, linear systems, and/or discrete problems.

Constraint: 

Objective: Objective: 

Exception is Wang et al. (2020), but can be overly conservative for interaction with many agents.

A. Wang et al., “Non-Gaussian chance-constrained trajectory planning for autonomous vehicles under agent uncertainty,” 
RA-L, 5(4), 2020, pp. 6041-6048.



Our Work: Risk-Sensitive Sequential Action Control

Extension of Stochastic SAC to Risk-Sensitive Optimal Control

• Nonlinear systems

• Arbitrary distributions

• Scalable to interaction with ~50 humans

47

Chance-Constrained Planning                           

Conditional Value at Risk (CVaR) Optimization                Risk-Sensitive Optimal Control

• Limited to unimodal (e.g. Gaussian) distributions, linear systems, and/or discrete problems.

Constraint:

Objective: Objective: 

Exception is Wang et al. (2020), but can be overly conservative for interaction with many agents.
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• Continuous-Time

• Deterministic

• Control-Affine

Stochastic Hybrid System with Time-Driven Switching

• Discrete-Time

• Stochastic

• Arbitrary Distribution

System Model



Entropic Risk Objective

49

Risk-Neutral Risk-Sensitive

J

Prob. Density

: {Collision, Tracking, Control} Cost

: Risk-Sensitivity Parameter

Mean Variance

Mean

Variance



Mode Insertion Gradient for Entropic Risk

Expected Mode Insertion Gradient (Stochastic SAC):

Risk-Sensitive Mode Insertion Gradient (this work):

50

State Trajectory: 

Adjoint Trajectory: 



Generative Behavior Prediction:

51

T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous 
data,” in ECCV, 2020.
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Robot-Future-Conditional Prediction

Robot Going Up Robot Going Down



Simulation Benchmark for Risk-Neutral Robot

54

Exhaustive Search: E. Schmerling et al., “Multimodal probabilistic model-based planning f or human-robot interaction,” in Proc. ICRA, 2018, pp. 3399-3406. 

BIC: Wang et al., “Saf e distributed lane change maneuv ers f or multiple autonomous v ehicles using buf f ered input cells.” in Proc. ICRA, 2018, pp. 4678-4684.

CrowdNav: C. Chen et al., “Crowd-robot interaction: crowd-aware robot nav igation with attention-based deep reinf orcement learning,” in Proc. ICRA, 2019, pp. 6015-6022.

Safer & More Efficient



Risk-Sensitivity and Navigation Behavior

55

θ = 0.0 (Risk-Neutral) θ = 1.0 (Risk-Sensitive)

Yielding behavior naturally emerges

from Risk-Sensitivity.



Risk-Sensitivity and Safety

57

θ = 0.0 (Risk-Neutral) θ = 1.0 (Risk-Sensitive)
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• Model-based approach when possible

• Probabilistic treatment of uncertainty

Resilience to Imperfect Models

[Nishimura, Mehr, Gaidon & Schwager, RA-L 

2021]

Active Reduction of Uncertainty

Formulated as

Belief Space Planning

Proposed Stochastic SAC

• Computationally efficient

• Handles stochasticity

• Considers long-term effect

Resilience to Randomness

Formulated as

Risk-Sensitive Optimal Control

Proposed Risk-Sensitive SAC

•Nonlinear systems

•Arbitrary distributions

•Scalable to interaction with ~50 humans

Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments
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• Model-based approach when possible

• Probabilistic treatment of uncertainty

Active Reduction of Uncertainty Resilience to Randomness Resilience to Imperfect Models

[Nishimura & Schwager, ICRA 2018]

[Nishimura & Schwager, WAFR 2018]

[Nishimura & Schwager, IJRR 2021]

[Nishimura, Ivanovic, Gaidon, Pavone & 

Schwager, IROS 2020]

[Nishimura, Mehr, Gaidon & Schwager, RA-L 

2021]

Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments
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Distributional Model Mismatch

Model Distribution: q(w) True Distribution: p(w)
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Distributional Model Mismatch

Imperfect models alone can lead to 

disastrous failure.

“No model is perfect, but some are useful.”

ꟷ every roboticist

R. Cheng et al., “Limits of probabilistic safety guarantees 
when considering human uncertainty,” in Proc. ICRA, 2021.
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Set of Possible Models – Ambiguity Set

Model Distribution

True Distribution

: Set of All Possible Distributions
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Set of Possible Models – Ambiguity Set
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Prior Work: Distributionally Robust Control

Key Idea: Planning against a worst-case distribution out of the ambiguity set.

Moment-based Ambiguity Set
• B.P.G. Van Parys et al., “Distributionally robust control of constrained stochastic systems,” TAC, 61(2), 2016, pp. 430-442.

• S. Samuelson and I. Yang, “Data-driven distributionally robust control of energy storage to manage wind power fluctuations, in Proc. 

CCTA, 2017, pp. 199-204. 

Wasserstein Metric-based Ambiguity Set
• A. Hakobyan and I. Yang, “Wasserstein distributionally robust motion planning and control with safety constraints using conditional 

value-at-risk, ” in Proc. ICRA, 2020, pp. 490-496.

f-divergence-based Ambiguity Set
• I. R. Petersen et al., “Minimax optimal control of stochastic uncertain systems with relative entropy constraints,” TAC, 45(3), 2000, 

pp. 398-412.

• A. Sinha et al., “Formulazero: distributionally robust online adaptation via offline population synthesis,” in Proc. ICML, 2020, pp. 

8992-9004.
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Prior Work: Distributionally Robust Control

Planning is against a worst-case distribution out of the ambiguity set.

Moment-based Ambiguity Set

• Only need moments such as mean and variance.

• Often overly conservative

Wasserstein Metric-based Ambiguity Set
• A. Hakobyan and I. Yang, “Wasserstein distributionally robust motion planning and control with safety constraints using conditional 

value-at-risk, ” in Proc. ICRA, 2020, pp. 490-496.

f-divergence-based Ambiguity Set
• I. R. Petersen et al., “Minimax optimal control of stochastic uncertain systems with relative entropy constraints,” TAC, 45(3), 2000, 

pp. 398-412.

• A. Sinha et al., “Formulazero: distributionally robust online adaptation via offline population synthesis,” in Proc. ICML, 2020, pp. 

8992-9004.
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Prior Work: Distributionally Robust Control

Planning is against a worst-case distribution out of the ambiguity set.

Moment-based Ambiguity Set

• Only need moments such as mean and variance.

• Often overly conservative

Wasserstein Metric-based Ambiguity Set

f-divergence-based Ambiguity Set

• Existing solution methods are not for nonlinear systems with continuous distributions . 
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Our Work: Risk Auto-Tuning Iterative LQR

Moment-based Ambiguity Set

• Only need moments such as mean and variance.

• Often overly conservative

Wasserstein Metric-based Ambiguity Set

f-divergence-based Ambiguity Set

• Existing solution methods are not for nonlinear systems with continuous distributions . 

KL-divergence-based Ambiguity Set & Risk-Sensitive Optimal Control

• Based on theory developed by Petersen et al. (2000).

• Nonlinear Systems

• Continuous Distributions

• Locally-optimal feedback policy

I. R. Petersen et al., “Minimax optimal control of stochastic uncertain 
systems with relative entropy constraints,” TAC, 45(3), 2000, pp. 398-412.
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Distributional Robustness and Risk-Sensitivity

: True distribution (unknown)

: Ambiguity set (known)

: Feedback Policy Class (known)

Distributional robustness yields Risk-aware Planning with optimal risk-sensitivity.

I. R. Petersen et al., “Minimax optimal control of stochastic uncertain systems with relative entropy constraints,” 
TAC, 45(3), 2000, pp. 398-412.

Petersen et al. (2000)

Lagrange Duality & Variational Representation of KL-Divergence 

: Entropic Risk Objective

: Risk-Sensitivity Parameter
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: Gaussian distribution (known)

Bilevel Optimization for Locally-Optimal Policy

Intractable to achieve global optimality for nonlinear systems! 
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Bilevel Optimization for Locally-Optimal Policy

Inner-Loop Problem (Risk-Sensitive Optimal Control) Outer-Loop Problem

iterative LEQG Algorithm Cross Entropy Method

Risk Auto-Tuning Iterative LQR (RAT iLQR)
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RAT iLQR (Ours) iLQG PETS

0/30 Collisions 1/30 Collisions 4/30 Collisions



74

Benefits of Risk Auto-Tuning

Conventional Risk-Sensitive Optimal Control

• No absolute scale

• Task-dependency

RAT iLQR

• No need for manual tuning 
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Efficiency of Risk Auto-Tuning

Conventional Risk-Sensitive Optimal Control RAT iLQR

0/30 Collisions 0/30 Collisions

Avg. Tracking Error: 0.38 Avg. Tracking Error: 0.32
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• Model-based approach when possible

• Probabilistic treatment of uncertainty

Resilience to Imperfect Models

Formulated as

Distributionally Robust Control

Proposed RAT iLQR

• Based on Risk-Sensitive Control

• Nonlinear Systems

• Continuous Distributions

• Locally-optimal feedback policy

Resilience to Randomness

Formulated as

Risk-Sensitive Optimal Control

Proposed Risk-Sensitive SAC

•Nonlinear systems

•Arbitrary distributions

•Scalable to interaction with ~50 humans

Active Reduction of Uncertainty

Formulated as

Belief Space Planning

Proposed Stochastic SAC

• Computationally efficient

• Handles stochasticity

• Considers long-term effect

• Outperforms prior methods

Online Trajectory Planning Algorithms for Robotic Systems

under Uncertainty in Interactive Environments



Planning Module ≠ Autonomy Stack
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Sensors Actuators

Autonomy Stack

Planning/Control

under 

Uncertainty• Dynamics Models

• Uncertainty Quantification



Planning as Part of Data-Driven Systems
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Sensors Actuators

Autonomy Stack

Planning/Control

under 

Uncertainty

Learned

Perception

Learned

Prediction
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91


