
Decentralized Multi-target Search and Coverage

Using Hyperparameter Consensus

Haruki Nishimura – 06045657

AA277 Multi-robot Control, Communication and Sensing
Prof. Mac Schwager

March 10, 2016

Abstract

We present a linear-consensus-based algorithm for estimating the un-
known positions of multiple targets using a team of sensing agents. Our
approach integrates the hyperparameter consensus protocol with the con-
ventional coverage cost function to deploy the agents and minimize the
expected minimum distances from the targets. The simultaneous learning
and control algorithms are provided for the one-target and the multi-
target cases under several assumptions on the observation model. We em-
pirically demonstrate via a set of simulations that our heuristic method
appropriately balances exploration and exploitation in the target search
and realizes a configuration to persistently monitor the targets.

1 Introduction

The field of multi-agent sensor networks has recently obtained extensive atten-
tion of researchers. The potential applications of multi-agent networks include
environmental monitoring, cooperative exploration, and search and rescue. One
of the challenging tasks for multi-agent systems is to provide coverage of a cer-
tain environment to meet the demands of users. This problem is known as the
coverage control problem, which can be classified into two subcategories in gen-
eral. The first category is the static coverage control, which aims to optimally
scatter a set of sensors in an environment to maximize the service quality as a
whole network. The other is the dynamic coverage control, in which the sensors
need to keep moving in the environment to maintain a prescribed coverage level.
For the static coverage control, one well-studied approach is to partition the en-
vironment according to the positions of agents and drive each agent towards the
centroid of the partitioned space where it is involved. This partitioning is known
as the Voronoi tessellation and is first applied to the distributed coverage con-
trol in [1]. Various extensions and modifications are presented thereafter, such
as [2][3].

1

Haruki Nishimura AA277

Although these Voronoi based coverage control methods have made signifi-
cant contributions, they generally require prior knowledge about the informa-
tion distribution function, which represents the state of the environment and
assigns relative importance to each point in it. In order to relax this assump-
tion, Schwager et al. [4] present a decentralized, adaptive coverage controller to
achieve optimal static coverage while learning the distribution function simul-
taneously. This type of simultaneous coverage and learning task has also been
studied in the context of the dynamic coverage problem in [5][6]. All of the
aforementioned three works employ control-theory-based methods to estimate
the distribution function.

On the other hand, many multi-agent sensing problems, including the simul-
taneous coverage and learning mentioned above, can be formulated as a paral-
lelization of machine learning algorithms. One can think of two different classes
of these parallel learning problems: those with a central information fusion pro-
cesser and those without one. Capmbell and How [7] refer to these problems
as distributed learning and decentralized learning, respectively. For example,
distributed classification and regression in sensor networks discussed in [8] falls
into the first category. Decentralized learning seems to have gained much more
attention from researchers, however. Many decentralized approaches involve
agents forming a consensus on the model parameters either in the maximum-
likelihood framework [9] or in the Bayesian scheme [10][11][12].

In the present work we reformulate the coverage control problem with an
unknown distribution as the simultaneous target search and coverage problem.
The main objective of this paper is to reinterpret the coverage cost function as a
statistical measure and incorporate the recursive Bayesian filter into the cover-
age controller to estimate the positions of the multiple static targets. We design
a decentralized algorithm which appropriately deploys the agents to persistently
monitor the targets. Particularly, we focus on the hyperparameter consensus
algorithm introduced by Fraser et al. [12] and show that their approach can be
extended to the decentralized multi-target search and coverage problem under
certain assumptions. The proposed framework has the potential to perform well
in practical situations. For instance, our method could be applied to a team
of unmanned marine vehicles searching for unconfirmed underwater volcanoes
using onboard sonar sensors.

The rest of the paper is organized as follows. In section 2, we formulate
the problem and derive the control law for the coverage deployment. In section
3, we impose several assumptions on our model and adapt the hyperparameter
consensus protocol for belief synchronization among the agents. The integrated
algorithms for the one-target case and the multi-target case are presented in
section 4. Finally, we demonstrate the proposed algorithms with simulations in
section 5, and provide discussions in section 6.

Page 2

Haruki Nishimura AA277

2 Problem Formulation and Control Law

Let Q ⊂ R2 be a convex and bounded domain. The N agents deployed in this
domain are denoted by pi ∈ R2 ∀i ∈ {1, . . . , N}. The number of static targets
K in the domain is known to all the agents, but the true positions xk ∈ R2,∀k ∈
{1, 2, . . . ,K} are unknown. Instead, each agent can use its onboard sensors to
make measurements and have a belief about the target positions in the form
of a probability density function φ(q), where q ∈ Q and

∫
Q
φ(q)dq = 1. This

function provides the probability density that a target is positioned at q.
Given this probability distribution, we are interested in minimizing the ex-

pected squared euclidean distance between the targets and the agents which are
already closest to them. Formally,

Eφ
[
min ||q − pi||2

]
. (1)

This expectation takes the form

H(p1, p2, . . . , pN) =

∫
Q

(min ||q − pi||2)φ(q)dq, (2)

which can be interpreted as a cost function of φ and (p1, . . . , pN). In the static
target detection scenario, one can think of ||q − pi||2 as a surveillance cost or a
motion cost for the agent pi to deal with a potential state change of the target
in future.

We need to further decompose this cost function in order to minimize it in
a distributed fashion. Indeed, H can be decoupled as follows.

H(p1, . . . , pN) =

N∑
i=1

∫
Vi

||q − pi||2φ(q)dq. (3)

Vi in (3) is called the Voronoi region of pi, which is a subset of Q such that all
the points in it is closer to pi than to all other pjs.

Vi = {q ∈ Q | ||q − pi|| ≤ ||q − pj || ∀j 6= i} (4)

Vi is bounded by the bisecting normal hyperplanes between pi and its neighbor-
ing agents or the Voronoi neighbors. The computation of Voronoi regions has
been extensively studied in the literature [13][14]. Furthermore, [1] proposes a
distributed control algorithm to minimize (3) by gradient descent.

ṗi = −∂H
∂pi

(5)

∂H
∂pi

= η(pi − CVi), (6)

where η is the control gain and CVi
represents the centroid of the Voronoi region:

CVi
=

1∫
Vi
φ(q)dq

∫
Vi

qφ(q)dq. (7)

Page 3

Haruki Nishimura AA277

From a geometrical perspective, this control law drives each agent towards the
centroid of its Voronoi region. The positions of the agents are proven to converge
to a centroidal Voronoi configuration, which corresponds to an extremum point
of the cost function (3). The reader is referred to [1] for the complete proof.

Although this continuous algorithm works well in practice, we will modify
it to consider the discrete time setting for implementation in this paper. The
position of the agent pi at time t+ 1 is given by pi and CVi at time t.

pi[t+ 1] = pi[t] + η(CVi [t]− pi[t])∆t, (8)

where ∆t is the timestep per iteration. This is a hybrid method of [1] and the
Lloyd’s algorithm [15].

3 Observation Model and Belief Synchroniza-
tion

So far we have assumed that the belief about the target positions have been
computed and synchronized among all the agents. However, synchronization
of the belief can be challenging due to the possibly high dimensional belief
space and the communication constraints. sharing the same belief among the
agents is critical to the control algorithm we derived in the previous section
since the computation of Voronoi regions depends on the consistency of φi(q) =
φ(q) ∀i ∈ {1, . . . , N}. Therefore, the quality of the belief uniformity is crucial
to our approach. In this section we will discuss a linear-consensus-based method
to realize the belief synchronization.

First, we will define the observation model. We impose the following as-
sumptions in the present work.

Assumption 1 (Linear Observation Model) The observation is linear and
subject to a Gaussian noise v with zero mean and a known covariance R. Let
zki denote a measurement of the target xk taken by the agent pi. Then zki is
given by the formulae below.

zki = xk + v (9)

v ∼ N (0, R). (10)

We assume that this model is known to the agents.

Assumption 2 (Limited Sensing Range) The agents can observe a target
only if it exists within the sensor’s range b ∈ R>0. This range may or may
not be known to the agents. We also assume that the agents are homogeneous.
Accounting for the sensor heterogeneity could be left for future work.

Assumption 3 (Data Association) The agents know which targets they are
observing. In other words, we assume that the data association is completed
upon the observation.

Page 4

Haruki Nishimura AA277

The third assumption may be strong and not always be true depending on
the scenario, but for simplicity we omit the complexity related to the data
association in this work.

Given the observation model, we employ the Bayesian approach to keep track
of the posterior belief. Before considering the multi-agent and multi-target case,
we will provide a brief review of the recursive Bayesian estimation for the one-
agent, one-target case. Let X ∈ R2 be a continuous random variable following a
distribution p(x|θ) = P (X = x|θ), where θ is a parameter determining the form
of the distribution. In our case, p(x|θ) corresponds to φ(q) and the governing
parameter θ is the unknown target position xk. Our purpose is to estimate this
parameter θ in the Bayesian framework, so we will create a belief state p(θ) and
update it based on a set of mk observations zk = {zk1, zk2, . . . , zkmk

} of the
target xk. Furthermore, we introduce a hyperparameter ω, which defines the
distribution over θ. From the Bayes’ Theorem, the posterior distribution over
θ after observing z is:

p(θ|z, ω) =
p(z|θ)p(θ|ω)∫
p(z, θ|ω)dθ

∝ p(z|θ)p(θ|ω) (11)

where p(z|θ) is the measurement likelihood function and p(θ|ω) is the prior
distribution conditioned on ω. If the observations are uncorrelated with one an-
other, or conditionally independent given θ, the term p(z|θ) can be decomposed
as

p(z|θ) = p(zk1|θ)p(zk2|θ) . . . p(zkmk
|θ). (12)

(11) and (12) illustrate how we can compute the posterior from the prior, the
measurement likelihood function and the actual observations. However, nu-
merically computing the integration of the denominator in (11) can be compu-
tationally expensive. We therefore introduce the conjugate prior distribution
to circumvent this problem. If the likelihood is conjugate to the prior, then
the posterior is of the same form as the prior and the hyperparameter can be
updated in a closed form.

p(θ|z, ω) = p(θ|ωpos) (13)

For the observation model given by (9) and (10), the conjugate prior is a Gaus-
sian distribution N (xk|µk,Σk) with the mean µk and the covariance matrix Σk.
From [12], the hyperparameters are the information form of the Kalman filter:

Λk = Σ−1k (14)

yk = Λkµk. (15)

The measurement updates are additive:

Λk ← Λk +R−1 (16)

yk ← yk +R−1zk. (17)

Page 5

Haruki Nishimura AA277

Thus, the recursive Baysian estimation withmk observations {zk1, zk2, . . . , zkmk
}

is done by iteratively updating the hyperparamaters in an additive form.

Λk ← Λk +mkR
−1 (18)

yk ← yk +R−1
mk∑
j=1

zki (19)

The hyperparameter updates can be also applied to multi-agent situations.
[12] proposes a hyperparameter consensus algorithm leveraging this additive
structure for belief synchronization and we adapt their method to this project.
The belief synchronization consists of the following two stages.

1. Local Update Stage
Starting from the same prior hyperparameters, each agent independently
updates them based on the new observations unique to it and subtract the
prior values.

∆Λki[0] ← mkiR
−1 (20)

∆yki[0] ← R−1
mki∑
j=1

zki, (21)

where mki denotes the number of new measurements taken by the agent
pi.

2. Linear Consensus Stage
The linear consensus protocol runs an iterative loop until convergence and
fuses ∆Λki and ∆yki respectively. Each iterative step is given by

∆Λki[l + 1] = ∆Λki[l] + ε
∑
j∈Ni

(∆Λkj [l]−∆Λki[l]) (22)

∆yki[l + 1] = ∆yki[l] + ε
∑
j∈Ni

(∆ykj [l]−∆yki[l]) , (23)

where Ni is the set of neighbors of the agent pi in the communication
graph. After the convergence, each agent updates the fused posterior
hyperparameters as follows.

Λk ← Λk +N∆Λki (24)

yk ← yk +N∆yki (25)

If the communication graph is undirected, (22) and (23) is guaranteed to
reach an asymptotic consensus as long as the graph is connected and ε ∈
(0, 1/max |Ni|]. The proof is presented in [16]. The group decision values are

Page 6

Haruki Nishimura AA277

the averages of the initial states:

lim
l→∞

∆Λki[l] =
1

N

N∑
i=1

∆Λki[0] (26)

lim
l→∞

∆yki[l] =
1

N

N∑
i=1

∆yki[0]. (27)

From (20) - (27), the fused hyperparameters are

Λk ← Λk +

(
N∑
i=1

mki

)
R−1 (28)

yk ← yk +R−1

 N∑
i=1

mki∑
j=1

zki

 , (29)

which correspond to the hyperparameters updated using all the new observa-
tions taken by the agents. Therefore, belief synchronization is achieved after
the consensus loop.

The hyperparameter consensus algorithm discussed above is focused on the
one-target belief update, but it can be also applied to the multi-target scenario.
In the next section we propose the complete algorithm for the multi-target case
as well as for the one-target case.

4 Proposed Algorithms

4.1 One-Target Search and Coverage

The one-target search and coverage algorithm is presented in Algorithm 1. First,
the Voronoi cells are computed according to the current agent positions. Lines
3-15 are the hyperparameter consensus algorithm consisting of the local update
stage and the linear consensus stage. In line 16, the mean µt of the current
distribution is extracted. This mean is used as an estimate for the target position
x and governs the belief φ(q). If the target has been observed by any of the
agents, then φ(q) = N (q|µt, R) gives the current belief. If not, we simply assume
that φ(q) is the uniform distribution, meaning that the target is equally likely
to be positioned at any points in Q. Note that we also need to normalize φ(q)
so that

∫
Q
φ(q)dq = 1 holds. Lastly, the Voronoi centroids are computed and

the agents are moved to the next positions by (8).
One advantage of this algorithm is that the agents do not need to broadcast

the observations to others, which could be difficult under communication con-
straints. The only required information to be exchanged is the agent positions
and the locally updated hyperparameters among the Voronoi neighbors.

Page 7

Haruki Nishimura AA277

input : Prior hyperparameters: y0, Λ0

Initial agent positions: {p1[0], . . . , pN [0]}
Connected undirected communication graph: G
True target position: x
Observation noise covariance: R

1 for each time step t > 0 do
2 ComputeV oronoiCells(p1[t], . . . , pN [t])
3 for each agent i ∈ {1, . . . , N} do /* Local update stage */

4 ∆Λit[0]← 0
5 ∆yit[0]← 0
6 if ||x− pi[t]|| ≤ b then
7 zit = x+ v, v ∼ N (0, R)
8 ∆Λit[0]← R−1

9 ∆yit[0]← R−1zit
end

end
10 for each agent i ∈ {1, . . . , N} do
11 repeat/* Linear consensus stage */

12 ∆Λit[l + 1]← ∆Λit[l] + ε
∑
j∈Ni

(∆Λjt[l]−∆Λit[l])

13 ∆yit[l + 1]← ∆yit[l] + ε
∑
j∈Ni

(∆yjt[l]−∆yit[l])

until convergence;
14 Λt ← Λt−1 +N∆Λit[end]
15 yt ← yt−1 +N∆yit[end]

16 µt ← Λ−1t yt
17 if µt 6= µ0 then
18 φ(q) = N (q|µt, R)

end
19 else
20 φ(q) = 1/

∫
Q
dq

end
21 normalize φ(q) q ∈ Q
22 compute CVi

=
∫
Vi
qφ(q)dq/

∫
Vi
φ(q)dq

23 pi[t+ 1] = pi[t] + η(CVi
[t]− pi[t])∆t

end

end
Algorithm 1: One-target search and coverage algorithm

Page 8

Haruki Nishimura AA277

input : Prior hyperparameters: yk0 = y0, Λk0 = Λ0 ∀k ∈ {1, . . . ,K}
Initial agent positions: {p1[0], . . . , pN [0]}
Connected undirected communication graph: G
True target positions: {x1, . . . , xK}
Observation noise covariance: R

1 for each time step t > 0 do
2 ComputeV oronoiCells(p1[t], . . . , pN [t])
3 for each agent i ∈ {1, . . . , N} do /* Local update stage */

4 for each target k ∈ {1, . . . ,K} do
5 ∆Λkit[0]← 0
6 ∆ykit[0]← 0
7 if ||xk − pi[t]|| ≤ b then
8 zkit = xk + v, v ∼ N (0, R)
9 ∆Λkit[0]← R−1

10 ∆ykit[0]← R−1zkit
end

end

end
11 for each agent i ∈ {1, . . . , N} do
12 for each target k ∈ {1, . . . ,K} do
13 repeat/* Linear consensus stage */

14 ∆Λkit[l + 1]← ∆Λkit[l] + ε
∑
j∈Ni

(∆Λkjt[l]−∆Λkit[l])

15 ∆ykit[l + 1]← ∆ykit[l] + ε
∑
j∈Ni

(∆ykjt[l]−∆ykit[l])

until convergence;
16 Λkt ← Λkt−1 +N∆Λkit[end]
17 ykt ← ykt−1 +N∆ykit[end]

18 µkt ← Λ−1kt ykt
19 if µkt 6= µ0 then
20 φk(q) = N (q|µkt, R)

end
21 else
22 φk(q) = 1/

∫
Q
dq

end

end

23 φ(q) = 1
K

∑K
k=1 φk(q)

24 normalize φ(q) q ∈ Q
25 compute CVi

=
∫
Vi
qφ(q)dq/

∫
Vi
φ(q)dq

26 pi[t+ 1] = pi[t] + η(CVi
[t]− pi[t])∆t

end

end
Algorithm 2: Multi-target search and coverage algorithm

Page 9

Haruki Nishimura AA277

4.2 Multi-Target Search and Coverage

The same algorithm for the multi-target case is presented in Algorithm 2. Lines
3-22 are the hyperparameter consensus algorithm for each target. This decom-
position is possible due to Assumption 3. Compared to the one-target algorithm,
the computational complexity of this part is proportional to the number of the
targets K.

Another notable difference is the expression of φ(q) in line 23. φ(q) =
1
K

∑K
k=1 φk(q) is a mixture of Gaussians with the uniform mixture ratio 1/K,

where φk(q) is the probability density that the target k is positioned at q. This
form of φ(q) equally weighs the influence of each target. We could also assign
distinct weights in order to account for the difference in the relative importance
of the targets.

5 Simulation Results

In this section we demonstrate the performance of the proposed algorithms
in the one-target and the multi-target scenarios. For both cases, the working
domain of the agents is bounded by a 10x15 rectangular boundary. Each agent
is assumed to be a point in the domain and initially positioned randomly within
the 1x1 squared region on the bottom left corner. The prior hyperparameters
are Λ0 = diag((10−9, 10−9)) and y0 = Λ0(7.5, 5)T. The sensing range is set to be
3 with the noise covariance R = diag((0.5, 0.5)). We used the Multi-Parametric
Toolbox 3 [17] on MATLAB for the computation of Voronoi cells.

5.1 One-target Case

Figure 1 presents the deployment process of the 8 agents represented by the
circles. The target is positioned at (12, 3). At t = 4, an agent observes the
target. The cross mark corresponds to the observation and the dashed contours
illustrate the fused belief. Having found the target, all the agents move towards
it and converge to a final configuration as shown in Figure 2. Figure 3 shows
the transition of the minimum distance between the target and the agents.
Although the distance does not converge to zero due to the stochasticity of the
observation model, it decreased from 11.3 at t = 0 to 0.2 at t = 46.

5.2 Multi-target Case

Figure 4 shows the deployment process of the 8 agents searching for 3 targets,
which are placed near the corners of the domain. + marks indicate the Voronoi
centroids. At t = 5.5, an agent observes the first target at (1.5, 9) and move to-
wards it. Unlike in the one-target case, however, the other agents keep exploring
in the domain. This is because of the uniform beliefs about the two unobserved
targets; the uniform beliefs encourage the agents to deploy uniformly across the
domain, thus enhancing exploration.

Page 10

Haruki Nishimura AA277

(a) t = 0 (b) t = 4

(c) t = 15 (d) t = 45

Figure 1: One-target search and coverage deployment process with 8 agents.
The target is positioned at (12, 3).

Figure 2: Converged configuration
(one-target)

!"

#"

$"

%"

&"

'!"

'#"

!" (" '!" '(" #!" #(")!")(" $!" $(" (!"

!
"#
$
%
&
'
(
)

*+()

Figure 3: Minimum distance from
the target

Page 11

Haruki Nishimura AA277

(a) t = 0 (b) t = 5.5

(c) t = 18.5 (d) t = 23.5

(e) t = 26.5 (f) t = 31

Figure 4: Multi-target search and coverage deployment process with 8 agents.
The targets are positioned at (13, 1), (1.5, 9) and (14, 8).

Figure 5: Converged configuration
(multi-target)

!"

#"

$"

%"

&"

'!"

'#"

!" (" '!" '(" #!" #(")!")(" $!" $(" (!"

!
"#
$
%
&
'
(
)

*+()

Figure 6: Average of the minimum
distances from the three targets

Page 12

Haruki Nishimura AA277

An interesting phenomenon occurs at t = 26.5. At this time, the last unseen
target is observed and the Voronoi centroids have shifted to the boundaries.
Since all the uniform beliefs have disappeared, exploration is no longer encour-
aged and all the agents move towards the targets. The final configuration is
presented in Figure 5. As can be seen in Figure 6, the average of the three
minimum distances from each target to the agents is reduced from 11.7 to 0.2.
The sudden decrease around t = 24 in Figure 6 corresponds to the configuration
in Figure 4d, when the second target is found.

6 Conclusion

In this paper we have integrated the hyperparameter consensus protocol with the
conventional coverage cost function to operationalize decentralized multi-target
search with a team of networked sensing agents. The proposed algorithms work
online and only require information exchange between the Voronoi neighbors.
We have demonstrated the feasibility of our approach via a set of simulations.
Although this heuristic method does not guarantee that all the targets will be
found, it is worthwhile to note that the uniform beliefs resulting from the unseen
targets contribute to balancing exploration and exploitation.

One limitation of our approach is that the hyperparameter update must be in
an additive form. This limits the class of distributions applicable to the proposed
framework. In addition, the resource allocation optimality is not considered
in the controller design. The data association problem is also excluded. We
are interested in extending this research to address these problems as well as
providing rigorous mathematical analysis of the proposed algorithms.

References

[1] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage Control for
Mobile Sensing Networks,” IEEE Transactions on Robotics and Automa-
tion, vol. 20, no. 2, pp. 243–255, 2004.

[2] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete Partitioning and
Coverage Control for Gossiping Robots,” IEEE Transactions on Robotics,
vol. 28, no. 2, pp. 364–378, 2012.

[3] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira, “Sensing
and coverage for a network of heterogeneous robots,” in 2008 47th IEEE
Conference on Decision and Control. IEEE, 2008, pp. 3947–3952.

[4] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, Adaptive Cover-
age Control for Networked Robots,” The International Journal of Robotics
Research, vol. 28, no. 3, pp. 357–375, 2009.

Page 13

Haruki Nishimura AA277

[5] C. Song, G. Feng, Y. Fan, and Y. Wang, “Decentralized adaptive awareness
coverage control for multi-agent networks,” Automatica, vol. 47, no. 12, pp.
2749–2756, 2011.

[6] C. Song, L. Liu, G. Feng, Y. Wang, and Q. Gao, “Persistent awareness
coverage control for mobile sensor networks,” Automatica, vol. 49, no. 6,
pp. 1867–1873, 2013.

[7] T. Campbell and J. P. How, “Approximate Decentralized Bayesian Infer-
ence,” 30th Conference on Uncertainty in Artificial Intelligence, 2014.

[8] J. Predd, S. Kulkarni, and H. Poor, “Distributed learning in wireless sensor
networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 56–69,
2006.

[9] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in IPSN 2005. Fourth International
Symposium on Information Processing in Sensor Networks, 2005. IEEE,
2005, pp. 63–70.

[10] P. M. Djuric, “Distributed Bayesian learning in multiagent systems: Im-
proving our understanding of its capabilities and limitations,” IEEE Signal
Processing Magazine, vol. 29, no. 2, pp. 65–76, 2012.

[11] S. Bandyopadhyay and S.-J. Chung, “Distributed estimation using
Bayesian consensus filtering,” in 2014 American Control Conference.
IEEE, 2014, pp. 634–641.

[12] C. S. R. Fraser, L. F. Bertuccelli, H. L. Choi, and J. P. How, “A hyperpa-
rameter consensus method for agreement under uncertainty,” Automatica,
vol. 48, no. 2, pp. 374–380, 2012.

[13] K. E. Hoff, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast computa-
tion of generalized Voronoi diagrams using graphics hardware,” in Proceed-
ings of the 26th annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’99. New York, New York, USA: ACM Press,
1999, pp. 277–286.

[14] M. Velić, D. May, and L. Moresi, “A Fast Robust Algorithm for Comput-
ing Discrete Voronoi Diagrams,” Journal of Mathematical Modelling and
Algorithms, vol. 8, no. 3, pp. 343–355, 2008.

[15] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[16] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Coopera-
tion in Networked Multi-Agent Systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, 2007.

Page 14

Haruki Nishimura AA277

[17] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric Tool-
box 3.0,” in Proc. of the European Control Conference, Zürich, Switzerland,
July 17–19 2013, pp. 502–510, http://control.ee.ethz.ch/ mpt.

Page 15

