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Abstract— We propose a novel belief-space planning algo-
rithm based on model predictive path integral control (MPPI).
We show that the existing MPPI framework can be applied
to Gaussian belief systems with nonlinear observations if the
underlying system dynamics is linear. We test our algorithm in
simulation on a 2D robot navigation task. The proposed method
empirically improves the performance more than three times
over a state-of-the-art approximate dynamic programming
approach.

I. INTRODUCTION

Recent development of efficient batteries and devices for
onboard computation has extended capabilities of robotic
systems to operate in the wild. However, the robots still have
difficulty in planning appropriate actions under uncertainty,
which is crucial for robustness in accomplishing practical
missions.

Planning under uncertainty is more challenging than its
deterministic equivalent, and is inevitable since neither per-
ception nor actuation of a robot can be fully deterministic
in practice. The sources of uncertainty include unmodeled
dynamics, stochastic disturbance, and imperfect sensing.

A principled approach to tackle this problem is planning
in belief space. A belief space is a space of parameters that
defines a probability distribution over the state space. The
planner then chooses sequential control inputs based on the
evolving belief states, with which the robot can appropriately
take actions despite stochasticity and partial observability.

In this work we propose a novel information-theoretic
control algorithm for belief-space planning. Unlike other
approaches, our method is based on the model predictive
path integral control (MPPI) [1]. The algorithm synthesizes
control signals online by simulating belief state transitions
under uncontrolled dynamics.

A. Related Work

Belief-space planning is known to be challenging for a
few reasons. First, the belief state is continuous and can
be high-dimensional even if the state space is small or
discrete. Second, the dynamics that governs the belief state
transitions is stochastic due to unknown future observa-
tions. In discrete time, some belief-space planning problems
can be formulated as partially observable Markov decision
processes (POMDPs). However POMDPs are shown to be
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PSPACE-complete even for finite horizon problems, and is
uncomputable in infinite horizon cases [2]. Furthermore, the
standard POMDP framework requires the reward function to
be explicitly dependent on the state variable, while in belief-
space planning the cost can be a function of the belief state.

For these reasons, tractable solution methods have made
approximations to the original problem. One approach is to
ignore stochasticity in the future observations by assuming
that maximum likelihood observations will always occur [3],
whereby the original stochastic problem is converted to a
deterministic one. This approach has been popular since
existing indirect or direct optimal control algorithms can be
used, but the solutions are suboptimal since stochasticity is
ignored. Moreover, methods based on nonlinear optimization
techniques such as [4] yield locally optimal solutions even
for the approximated problem.

Another class of techniques relies on solving approximate
dynamic programming online. In [5], optimal manipulation
of an object with unknown mass properties is addressed
by formulating a Bayes-adaptive Markov decision process
(BAMDP), which is then solved using a variant of Monte
Carlo tree search (MCTS) [6] in the belief space. Approxi-
mate dynamic programming is advantageous as it takes into
account the stochastic belief dynamics, but is computation-
ally expensive since both the belief space and the action
space need to be sufficiently explored.

In continuous-time stochastic optimal control theory, the
path integral representation of the value function [7] is known
to equal the information-theoretic free energy for control
and noise affine dynamical systems under certain regularity
conditions [8]. Williams et al. [1] exploit this property and
present the model predictive path integral control (MPPI)
algorithm. Instead of performing dynamic programming, the
MPPI controller optimizes the sequence of control inputs by
minimizing the KL-divergence between the induced distribu-
tion over the state trajectories and the optimal distribution as
defined by the tight lower-bound of an information theoretic
inequality. The algorithm is favorable as it does not require
the sampling of different action sequences.

B. Contributions

In this paper we show that MPPI can be used for con-
trolling nonlinear Gaussian belief systems. Specifically, we
consider the systems with extended Kalman filter (EKF) and
linear state transitions. The simple LQG controller cannot
be used in this case due to nonlinearity of the measurement
function.



Although MPPI has been used for controlling stochastic
systems including aggressive driving of an RC car [9], there
are very few existing works that have applied MPPI to
the belief-space planning. Recently Pan et al. [10] have
proposed a belief-space control algorithm using MPPI under
model uncertainty, in which the unknown parameters of the
dynamics are learned online via sparse spectrum Gaussian
processes. This is different from our work since there is no
partial observability of the states or stochasticity in the belief
transitions themselves in their problem, whereas we take into
account both of them. To our knowledge this is the first paper
that has applied MPPI to a belief-space planning problem of
this kind.

The rest of the paper is organized as follows. In Section
II we give conditions to the belief dynamics under which
MPPI can be applied. In Section III we review MPPI and
adapt it to the belief-space planning. Simulation results are
given in Section IV, followed by conclusions and future work
in Section V.

II. EXTENDED KALMAN FILTER WITH LINEAR STATE
TRANSITIONS

A. System Specifications

Suppose we have a linear discrete-time transition model
for the unobserved state xt ∈ Rn as given by

xt+1 = Atxt +Btut + vt, (1)

where At ∈ Rn×n and Bt ∈ Rn×m are possibly time-
varying matrices, and ut ∈ U ⊆ Rm is a control input.
The system is corrupted by additive Gaussian white noise
vt ∼ N (0, Qt).

As opposed to the state transition model, the observation
model can be nonlinearly dependent on the state as

yt = g(xt) + wt, (2)

where yt ∈ Rl is the observation at time t and g is a
differentiable function of x. Similarly to the state transition,
the observation has an additive white Gaussian noise term
wt ∼ N (0, Rt).

B. Belief Dynamics

In the belief-space planning, the probability distribution
over the unobserved state xt is represented by the belief
state bt. For Gaussian systems, the belief state is uniquely
defined by the Cartesian product of the mean vector µ ∈ Rn
and the covariance matrix Σ ∈ Sn+ as

bt = (µt,Σt), (3)

where Sn+ is the set of all symmetric positive definite n-by-n
matrices.

The transition of the probability distribution follows the
Bayes rule

p(xt+1; bt+1) ∝ p(yt+1 | xt+1)

∫
x

p(xt+1 | x, ut)p(x; bt)dx,

(4)

which induces the corresponding belief state transition
model. Unfortunately the exact Bayesian update is intractable
for systems with nonlinear observations, but we can lo-
cally linearize the observation model and approximate the
posterior with a Gaussian distribution. The resulting EKF
equations are given by

µt+1 = At
(
µt + ΣtC

T
t H

−1
t (yt − g(µt)

)
+Btut (5)

Σt+1 = At
(
Σt − ΣtC

T
t H

−1
t CtΣt

)
AT
t +Qt, (6)

where Ct = ∂
∂xg(x)|µt

and Ht = CtΣtC
T
t + Rt. Here we

have used the EKF equations in the ”update-then-predict”
scheme.

In doing so, notice that the covariance transition in (6)
becomes deterministic. Indeed, all the terms in (6) is either
a constant or a deterministic function of bt = (µt,Σt).
On the other hand, the mean transition in (5) involves
the stochastic observation term yt. Thanks to the Gaussian
approximation in EKF we can characterize the distribution
over this observation as

p(yt | µt,Σt) = N (g(µt), Ht). (7)

Therefore, the difference yt − g(µt) is also approximated to
be Gaussian with mean 0 and covariance Ht. Rewriting (5)
yields

µt+1 = Atµt +Btut + ηt, (8)

where ηt ∼ N (0, AtΣtC
T
t H

−1
t CtΣtA

T
t ). Let St(µt,Σt)

denote this covariance matrix for ηt. St is a valid covariance
matrix since it is symmetric and positive semidefinite.

In summary, we have shown that the belief dynamics can
be compactly represented by

µt+1 = Atµt +Btut + ηt ηt ∼ N (0, St(µt,Σt)) (9)
Σt+1 = ht(µt,Σt), (10)

where ht is the deterministic nonlinear function defined in
(6). We have effectively separated the stochasticity in the
belief dynamics and all the uncertainty in the transition
is now in the mean vector only. Furthermore, the mean
dynamics is affine in control and noise. This is not always
the case since in general the nonlinear dynamics would make
both µ and Σ evolve stochastically. In the next section we
will see how this special property allows us to use the MPPI
algorithm in the belief space.

III. MODEL PREDICTIVE PATH INTEGRAL CONTROL IN
BELIEF SPACE

A. Cost Model

Consider the following belief-state-dependent cost

J(b0:T ) = φ(bT ) +

T−1∑
t=0

c(bt), (11)

with terminal cost φ and stage cost c. Notice that the control
cost is not involved. Additive quadratic control cost terms
will appear when we obtain the free energy equation below.



B. Information-Theoretic Inequality

Suppose that the covariance matrix St(µt,Σt) for the
mean transition is full rank. Then it is positive definite and
the conditional belief transition density is defined as

qut
(bt+1 | bt) = Z exp

(
− 1

2
(µt+1 − (Atµt +Btut))

T

×St(µt,Σt)−1 (µt+1 − (Atµt +Btut))

)
,

(12)

where Z is a normalization constant. If St is not full
rank, then the distribution is degenerate and the density
function is ill-defined. This occurs when the dimension of the
observation vector is lower than that of the state vector, for
example. We can still define a density function by restricting
the Lebesgue measure to a lower dimensional subspace, but
the further analysis of this case is not considered in this paper
and left for future work.

We are interested in the density ratio between the belief
trajectory distributions induced by the controlled and the
uncontrolled dynamics. Let Qu0:T−1

be the controlled belief
trajectory distribution and P be the uncontrolled one. The
corresponding density functions are

qu0:T−1
(b0:T ) =

T−1∏
t=0

qut
(bt+1 | bt)p(b0) (13)

p(b0:T ) =

T−1∏
t=0

p(bt+1 | bt)p(b0), (14)

respectively. p(b0) represents the prior distribution over
b0 and we used the Markov property for decoupling the
joint distributions. The uncontrolled belief transition density
p(bt+1 | bt) has the same form as (12), except that ut is 0.

With the two distributions defined, we obtain the following
information theoretic inequality:

−λ log

(
EP

[
exp

(
− 1

λ
J(b0:T )

)])
≤ EQu0:T−1

[
J(b0:T ) +

λ

2

T−1∑
t=0

uT
t St(µt,Σt)ut

]
.

(15)

The derivation is almost identical to the previous work [11]
and is omitted for brevity. The key idea is to switch the
distribution from P to Q in the left hand side of (15)
and apply the Jensen’s inequality. This operation is known
as the Legendre transformation [12]. The left hand side
of (15) is called the free energy. Notice that on the right
hand side we have a standard cost of optimal control with
the additive quadratic control cost, in which the coefficient
matrix is given by St. λ > 0 is a user-defined parameter that
determines the weight on the control effort.

In summary, we have obtained the lower bound on the
cost of an optimal control problem. Furthermore, from the
Jensen’s inequality we know that the lower bound is tight

for the density q∗ given by

q∗(b0:T ) ∝ exp

(
− 1

λ
J(b0:T )

)
p(b0:T ). (16)

C. Control Optimization

In [9], [11] the authors have proposed a KL-divergence
minimization approach to compute the control that achieves
a controlled distribution as close as possible to q∗(b0:T ).
Following this approach, we have the optimization problem

minimize
u0:T−1

DKL

(
Q∗ || Qu0:T−1

)
subject to ut ∈ U, t = 0, . . . , T − 1. (17)

Using the definition of KL-divergence one can show that this
optimization problem is equivalent to

maximize
u0:T−1

∫
Ωb

q∗(b0:T ) log

(
qu0:T−1

(b0:T )

p(b0:T )

)
db0:T

subject to ut ∈ U, t = 0, . . . , T − 1, (18)

where Ωb is the space of all possible belief trajectories.
We can further simplify the objective by substituting (13)
and (14) into (18) and using (12). Then the log(·) function
becomes

log

(
qu0:T−1

(b0:T )

p(b0:T )

)
=

T−1∑
t=0

{
− 1

2
uT
t B

T
t St(µt,Σt)

−1Btut

+ uT
t B

T
t St(µt,Σt)

−1(µt+1 −Atµt)
}
.

(19)

Therefore, the joint optimization with respect to the control
trajectory u0:T−1 can be decoupled into the optimization of
each control signal ut as

maximize
ut

− 1

2
uT
t B

T
t XtBtut + uT

t B
T
t zt

subject to ut ∈ U, (20)

where

Xt =

∫
Ωb

St(µt,Σt)
−1q∗(b0:T )db0:T (21)

zt =

∫
Ωb

St(µt,Σt)
−1(µt+1 −Atµt)q∗(b0:T )db0:T . (22)

Note that Xt is positive definite since it is an integral
of nonnegatively-weighted positive definite matrices. Thus,
BT
t XtBt is positive semidefinite and (20) becomes a convex

optimization problem if the admissible control set U is given
by a convex inequality constraint. In this case the solution
can be obtained quite efficiently using an existing convex
optimization solver.



Algorithm 1 MPPI for EKF Dynamics
INPUT: Current belief b0 = (µ0,Σ0)
OUTPUT: Control signal u0

1: for i = 1:N do
2: Sample uncontrolled belief trajectory bi0:T . (9),(10)
3: Compute sample weight wi(bi0:T ) . (23),(11)
4: end for
5: Compute normalized weights {w̄1, . . . , w̄N}
6: X0 ≈

∑N
i=1 w̄

iS0(µi0,Σ
i
0)−1

7: z0 ≈
∑N
i=1 w̄

iS0(µi0,Σ
i
0)−1(µi1 −A0µ

i
0)

8: Solve (20) for u0.
9: return u0

D. Importance Sampling

We are left with computing the coefficient matrix Xt =
EQ∗ [S−1

t ] and the vector zt = EQ∗ [S−1
t (µt+1 − Atµt)].

In [11] an iterative importance sampling scheme is em-
ployed, where in each iteration the proposal distribution
is the controlled distribution Q induced by the previously
computed control sequence ui0:T−1, and the importance
sampling weights are re-computed to find the updated
sequence ui+1

0:T−1. In our problem, however, this iterative
update would require computing the time varying matrix
St = AtΣtC

T
t H

−1
t CtΣtA

T
t and inverting it many times for

every time step, which can be computationally expensive for
high-dimensional systems. Therefore we chose to use the
uncontrolled distribution P as the proposal distribution. The
importance sampling weight w(b0:T ) is given by

w(b0:T ) =
q∗(b0:T )

p(b0:T )
=

1

η
exp

(
− 1

λ
J(b0:T )

)
, (23)

where η is a normalization constant. In practice we do not
need to compute η since the weights are normalized after the
samples are drawn. The resulting sampling equations are

Xt = EP[St(µt,Σt)
−1w(b0:T )] (24)

zt = EP[St(µt,Σt)
−1(µt+1 −Atµt)w(b0:T )]. (25)

The entire MPPI algorithm is summarized in Algorithm
1. The implementation is simple and highly parallelizable.
The controller is applied in a receding horizon fashion to
optimize the next control input over a finite horizon at each
planning step.

IV. SIMULATION RESULTS

In this section we apply the MPPI algorithm to a problem
of 2D robot navigation under uncertainty. The task is to
control a robot under stochastic disturbance so it successfully
approaches a desired goal location. The robot employs noisy
range observations of 7 waypoints for localization. The
positions of the waypoints are known to the robot. A simple
single integrator dynamics with At = I2×2 and Bt = I2×2 is
assumed. The simulation environment is depicted in Figure
1.

Fig. 1. Initial configuration of the 2D robot navigation problem. The robot
depicted in red has to approach the yellow goal location using noisy range
observations of the known waypoints only. The dynamics of the robot is
subject to stochastic disturbance. The shaded blue area represents the 99%
confidence ellipse.

To encode the desired behavior the following cost function

J(b0:T ) =
T∑
t=0

1

2
tr(CΣt) +

1

2
µT
t Cµt (26)

with C = 10 × I2×2 was used. The stage cost function
c(bt) = 1

2 tr(CΣt) + 1
2µ

T
t Cµt corresponds to Ebt [ 1

2x
T
t Cxt]

under the Gaussian belief assumption.
The MPPI algorithm was used to synthesize the control

signals online with the horizon length of T = 10. The
number of total steps in one simulation episode was 200. For
the control constraint ut ∈ U we used the box constraint

(−0.1,−0.1)T � ut � (0.1, 0.1)T. (27)

Finally the resulting convex program (20) was solved using
the Convex.jl package in Julia [13].

We compared the performance of our approach against
a state-of-the-art approximate dynamic programming algo-
rithm called continuous upper confidence trees [14]. This
algorithm is a variant of MCTS that uses double progressive
widening (DPW) for gradually constructing the search tree
in continuous state and action spaces. An advantage of this
version of MCTS is that it can directly deal with continuous
parameteric belief states as opposed to the standard MCTS
method that requires discrete state space representations.

The comparison of the total cost can be found in Figure
2, where for each horizon length T we executed the two
algorithms 10 times from the same initial configuration
with different random seeds. The MCTS used the negative
stage cost as the reward function. As can be seen, the
proposed MPPI controller achieves significant performance
improvement over MCTS. The results also suggest that MPPI
is more sample-efficient than MCTS since the variance is
small and the performance is not affected by the varying
number of Monte Carlo samples.

V. CONCLUSIONS

In this paper we have proposed a novel belief-space plan-
ning algorithm for Gaussian belief dynamics with nonlinear
observation models. Our method is based on the model
predictive path integral control, which has been rarely used



Fig. 2. Total cost of control with MPPI and MCTS algorithms. For each
number of samples the results were averaged over 10 different simulation
episodes. Overall proposed MPPI controller achieves cost values that are
more than three times lower than MCTS, which is a significant performance
improvement.

in belief-space planning. Starting from the EKF dynamics
we have derived a receding horizon control law that is based
on importance sampling under uncontrolled belief dynamics
and convex optimization. In simulation we have confirmed
that the proposed algorithm significantly outperforms a state-
of-the-art approximate dynamic programming approach. In
future work, we are interested in extending this method to
the degenerate Gaussian density cases as well as applying
to more complex belief-space planning problems of various
kinds.

REFERENCES

[1] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance Control Dynamics, vol. 40, pp. 344–357, feb 2017.

[2] M. J. Kochenderfer, C. Amato, G. Chowdhary, J. P. How, H. J. D.
Reynolds, J. R. Thornton, P. A. Torres-Carrasquillo, N. K. Üre, and
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